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Abstract

The statistical analysis of dynamie stability failures of ships is made extremely
difficutl due to the problem of rarity. Few or no events of interest may be observed in the
amount of time that is feasible for model testing or even simulation. The Envelope Peaks
Over the Threshold (EPOT) method is a statistical extrapolation technique that was
developed to address this problem. It uses the principle of separation to decompose the
problem into rare and non-rare sub-problems. The non-rare problem 1s solved trivially
with direet statisties, while the rare problem is solved by fitting a distribution to the peaks
or maxima over a threshold. The notion of statistical condfidence it carried through the
whole process. The algorithm and principles behind the algorithm are defined and
explored in detail.
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Introduction

Ships of novel hull form shapes may be vulnerable to dynamic stability failures as
currently existing stability standards, which are based on previous experience, do not include
these unconventional shapes. Some of the failures related to dynamie stability are caused by
irregular waves and gusty wind. The inherent randomness of these environmental factors
makes the probability of stability failurc a very useful measure for both design and operation.
This work’s particular focus 1s partial stability failure related to large roll angle events caused
mostly by pure loss of stability on the wavce crest.

Difficultics evaluating the probability of large roll angles are related to both the rarty
of the event and the nonlinearity of the dynamical system describing the motion of a ship in
moderate to severe scas. The nonlinearity of the dynamical system comes mostly from
nonlinear stiffness that also could be a random quantity due to changing stability in waves:
however other terms (including yaw moment and roll damping) also make their contribution.
As these nonlinearities are essential to the problem, options for realistic assessment may be
limited to numerical simulations using advanced potential codes and model tests.

The rarity of the large roll event defines another set of requirements for the solution
of this problem. Conditions arc possible when the large roll event is not observed during the
available run-time of the simulation or model test. Other conditions may lead to very few
observed large roll cvents so that use of direct statistical counting cannot be considered as a
practical option. Thercfore, the solution must be an extrapolation.

Probabilistic or statistical extrapolation i1s widely used in technology: prediction of
extreme cvents utilizes extreme value theory. This type of methodology is based on the
extreme value distribution being fit to statistical data: then the distribution can be used to
predict an extreme value that can occur with a given probability or mean time that passes
before such an extreme value is observed. Mathematical background of these methods comes
from thcorems of the extreme value theory stating that a maximum of a random variable has
a limiting distribution that does not depend on type of distribution of this variable.

The problem, with straight-forward application of this method, is related with the
significant nonlincarity of the dynamical system. A sample of roll motions resulted both from
experiment or numerical simulation is statistically dominated by relatively small roll angles.
As the stiffness of the dynamical system is significantly nonlinear, properties of the system
change significantly with the roll angle. Thercfore, extreme-value distribution fitted with all
the data may not be representative of the propertics of the system at large roll angles. This
problem is generally known in the extreme value statistics; its standard solution 1s a “peak-
over-threshold™ (POT) method. The idea is to use data which exceeds a certain threshold.

Interpretation and adaptation of the POT method for probabilistic evaluation of
dynamic stability is the main corc of this work. The most principle aspeets are as follows:

e Relation with time of exposure; probabilistic measure of dynamic stability should
have explicit relation with tuime. The most natural way is to present it in a form of the
rate of failures (average number of failures per unit of time; it equals to inverse value
of a mean time before/between failures). This allows using Poisson flow to express




probability of failure during given time of exposure (assuming stability failures being
independent random events).

e Statistical uncertainty; considered probabilistic measure of dynamic stability is
calculated based on a finite-size dataset. That makes the measure a random value and
it has to be treated accordingly. Confidence interval is a standard way to handle
statistical uncertainty of a value derived from a finite-size sample. Statistical
uncertainty is also a major faetor ehoosing a numerical valuc for the threshold.

e Cheek of eonsisteney and convergence; correct interpretation of the POT method
needs to be checked by comparison with other methods, such as upcrossing theory.
Convergence also can be tested by comparison with the results of direet counting
using a sample of larger size.

Practical application of the method is meant for partial stability failures. This cvent
oceurs when a ship encounters large roll (or pitch) angle that may be dangerous for crew or
equipment on board. That means that a roll angle may be dangerous on cither side, port or
starboard, so exceedance on both sides constitute stability failure. As roll (and pitch) motions
have certain inertia, a large amplitude on one side is likely to be followed by a large
amplitude on the other side. This make events statistically dependent and may create a
problem with the application of Poisson distribution and therefore with an explicit
relationship with time. To avoid this complieation, an envelope may be considered instead of
the original process. So the cnvelope peaks-over-the-threshold is actually used for
extrapolation.

In summary, this work is focused on the appliecation of the Envelopc Peak-Over-
Threshold (EPOT) method for the probabilistie evaluation of dynamie stability using a
datasct originated from numerical simulation or model experiment. The method can be tuned
to handle the nonlinearity of the dynamical system. The method provides an explieit relation
with time of exposure and eomes with a confidenee interval as a measure of statistieal
uncertainty. Finally, the method is meant to be tested for consistency against other theorctical
methods and for convergence against the result of direct counting on a larger-size sample.

The original idea to use peak-over threshold as a method to treat the problem of rarity in
a nonlinear dynamical system belongs to author B. Campbell. He also proposed to use an
envelope as a means to evaluate the rate of exccedanees of both sides while keeping
applicability of Poisson flow. Author V. Belenky provided theoretical justification and initial
numerical testing of the method. Numerical implementation of the method is a result of joint
cfforts of the authors. Seetion | through 5 are written by V. Belenky; Scetion 6 is written by
B. Campbell.



1. Theoretical Background

1.1.Relation with Time

Here we review the available formulations for relating the probability of the
occurrence of a large roll cvent with a ime of ecxposure.

1.1.1. Introduction of Time - Binomial Distribution

A fundamental building block of thc probability of event occurrence 1s the
connection between time duration and the numbcr of events likely to be seen. Consider n
instants of timc of short duration As. Assume that an cvent (1.c. a large roll angle) may
happcn at an instant of time ¢ with probability p;. Also assume that if therc 1s more than
one large roll cvent, they can be considered as independent random events. This
assumption can be justified by the expected rarity of large roll events and, therefore. the
sufficicnt time is cxpected to pass between two subsequent events to eliminate any
dependence.

Consider the probability that an event occurs exactly at i-th time step. This
implies that the event does not happen n all other stants ot time.

P(’=’,)=([U‘hn([,.|I),‘I,.|---([,, an : ql =l—pt (ll)

It is clear from the tormula (1.1) that probability P depends on how many time
instants arc included, therefore this formula alrcady expresses the relationship between
probability and time.

If the conditions during the exposurc time under assessment can be considered
unchanged (that 1s, the process 1s stationary), then there 1s no differcnce between any two
instants of time; thercforc probability p; must be the same for all instants of time. This
allows re-writing formula (1.1):

Pli=tj=pg""; ng=l=p Pl

Note that the probability in the formula (1.2) does not depend at which instant of
time the event has occurred, but it still must be a particular instant ot time ¢;.

Consider the probability that the event occurs once at any nstant of time. This
g g st - 3 d - 3
means that it can occur in the I™ instant or in the 2" instant and further on. There are
exactly n possible scenarios how the cvent can oceur once during » time steps.

~

P(m=1)=npq"" (159

Where m 1s the number of cvents that occur in the length of the record.
Consider the probability of two cvents happening cxactly at the instants 7 and j.
Following the logic of formula (1.2):

Pl =2 t=d, d=%,) = §"§"" (1.4

To express the probability that two cvents occur at any two moments of time, 1t 1s




necessary to find all possible combinations of how two elements can be chosen from ».
The formula for such a value is known from combinatorics:

C(n.2) = n!
(n, )—'2(,—7_2—)! (3

The probability of the event occurring at any two instants of time ean be
expressed as:

P(m=2)=C(n,2)p2q" < (1.6)
Generalizing formula (1.6) for the case when the event oceurs & times at any instant:
P(ky=C(nk)p'q"* (1.7)

Here C(n, k) defines a number of eombinations of how & values ean be chosen out of n.
The general formula is also available from eombinatories:
n!

s e o
s k)

Finally, the probability that exactly £ events oceur during the time of exposure
represented by » time steps is:

’7! k n—-k
Pk)=——— |-
(k) k!(n_k)!p (I-p) (1.9)

Formula (1.9) is known in probability theory as the binomial distribution.

1.1.2. Probability of Event - Upcrossing Theory

We now consider the transition from diserete time steps to eontinuous time and let
At approach zero. We want to find the probability of an event occurring at time instant 7.
We ean approach this by considering the underlying proeess, such as the rolling of a ship.
A large roll event is defined as the exceedance of some level a by roll angle ¢. Consider
the process of roll angle as differentiable proecess with known joint distribution of roll
angle and roll rate, f(¢,9).

Exceeding the level « at time instant s can be expressed in the form of the
following system of inequalities:

ty<a
) (1.10)
O(r+dt)y>a
As the proeess of roll angle is differentiable:
o)y <a
; o Wl
(N +o-dt>a

Obviously, the system of inequalities (1.11) can only be satisfied if the roll rate is
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positive. Therefore adding the eondition of positive roll rate does not change the system
of inequalities (1.11):

d(1)<u
&1y >a+d-dr (1.12)
>0

The probability of the event occurring at the instant ¢ is expressed as the probability of

satisfying the system of inequalities (1.12) and the probability can be written as the
integral of the joint distribution of roll and roll rate:

o x

p=[ [/ (6. (1.13)

a odr 0

The limits of the first integral are infinitely close to each other. The mean value theorem
allows re-writing the equation (1.13) as follows:

p=a'fJ.f(a,d))(i)dd) (1.14)

Formula (1.14) shows that the probability of the large roll event occurring at time mstant
t beecomes infinitely small if the time is considered continuous;

limp=limp=dp (1.15)
Ar -0 "z E

Therefore, the nomenelature dp is more appropriate for the formulac (1.13) and (1.14) m
this case:

dp = di j f(a,6)bddd (1.16)

Then integral in formula (1.16) has a meaning of derivative of the instantancous
probability of the event with respeet to time:

dp_" i et
i Of./(a,dw)dxfcb = M1) (1.17)

Here A 1s the rate of events. In general, it is funetion of time.

limp =lim p =dp = A(t)dt (1.18)
Ar—0 n—r ;
If the proeess of roll is stationary, the rate of events becomes constant and formula (1.17)
can be simplified, as the first derivative a of stationary proeess is independent of the
process itself.




1.9 = 1) /() (1.19)

and formula (1.17) becomes:

dp o g .k
h=="= /() Oj,f(¢)¢d¢ (1.20)

1.1.3. Continuous Time — The Poisson Distribution

Continuing the transition to continuous time, we set Az infinitely small, which
means n= and look for the probability that there would be exactly k£ events during time
i

P, (k) = lim(P(k)) = lim(C(n, k) p* (1~ p)™* ) (1.21)

Taking into account formula (1.20), the probability of the event occurring at time
¢ can also be expressed in terms of discretized time:

p=7»At=}:—7T (1.22)
Substituting formula (1.8) into (1.21) and expanding some of factorials, we obtain:

T T e g T
a'(k)_f]"-m( K(1-2-..(n—k)) 73 J e

After dividing the numerator and denominator by (1-2-...(n - k)):

P.(k) = lim((”_k+ D..(n—1)-n pk(l _p)n-k) (1.24)

nox k!

Substitution of formula (1.22) into (1.24) yields:

k N\ -k
Pr(/\‘)=lim[(n_l‘H)"(n_l)'"[)‘lj (I—X_T) }:

n-yeo k! n

i ,im[w-“w-k-w—w-n (A ].(l_x_r]"}

(1.25)

Bioen n n



Now constder the linuits of each factor:

g MR l)"_'("_l)'kal (126)
o n
3

linl(l—k—r] J=l (1.27)
n—or '7
o JEEY ) Oy
.I.HJB B Ol M (1.28)

\Il
lim [l—l—T} Jzexp(~kT) (12D
e R 8l '7 H

Taking into aceount equations (1.26)-- (1.29), formula (1.25) can be presented as:
(7).

Pr(k) = exp(—AT) (1.30)

Equation (1.30) is known as the Poisson distribution. 1t expresses probability of exactly &
events occurring during the exposure time 7 for a eontinuous proeess.

1.1.4. Time Before/Between Events

Consider the cumulative distribution function (CDF) of time before the first event
or between eonseeutive events. As an event may oeeur at any instant of time, the interval
between them is a random variable. This interval also ean be defined as a time while no
events oceurs.

Consider CDF of the time while no event oceurs. By the definition, this is the
probability that a random variable is less than or equal to an argument.

F,(x) = P(T < x) (131)
The CDF also can be expressed through the probability ot a eomplimentary event:
Fo(x)=1-P(T > x) (1.32)

If no event oeeurs then the time between them 1s obviously larger than the
argument. Therefore, this is a probability that no event oeeurs during time 7. It can be
found from formula (1.30) by setting & to 0:

P(x>T)= P, (k =0)=exp{—AT) (1.33)
Formula (1.32) ean then be expressed as:
F(Ty=1-exp(-AT) ; T20 (1.34)

This CDF is known in probability theory as the exponential distribution. The
probability density funetion (PDF) of the exponential distribution can be found by




differentiating thc CDF, cquation (1.34) with respect to its argument:

dF,(T) _

f(T) ==L = _Jexp(-AT) ; T20 (1.35)
dT
The exponcntial distribution has a single paramctcr A, the ratc of cvents. The

inverse of A is the mean value and standard deviation of the time without an cvent.

m(T) = jrf,(r)dz = %1 (1.36)
0
V(T)= [(T-m(T)) f,(T)d1 = %13 : o(M=Y, (1.37)

Here m(T), V(T) and o(7) are the mean valuc, variancc, and standard dcviation of time
between / before the event, respectively.

It 1s possiblc to demonstrate that formula (1.34) also can be interprcted as the
probability of at lcast one cvent (one event, two events or more) occurring in timc
duration 7. Expressing this probability through the probability of complimentary event
yields expression identical to (1.34)

P(k#0)=1-P.(k=0)=1-exp(-AT) (1.38)

1.2.Statistical Evaluation of Upcrossing Rate

We now shift our focus to the statistical estimation of the rate of upcrossing
events (upcrossing rate), including an appropriatc eonfidence interval. We also wish to
relate the upcrossing rate to statistics of othcr rclated parameters, including the time
between events and the time before the first event.

1.2.1. Statistical Estimate of the Parameter of the Distribution

Consider a sample of a stochastic process x, presented in thc form of an cnscmble
of Ng records. Each reeord is represented by a time history of Npr points with the time
step At and n= Npr-1 time steps. Then the event of uperossing of the level a can be
associated with a random variablc U dcfined for each time step as follows:

L %, E@O%, f>a : )
= =L = Ll (1.39)

0 Otherwise
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The number of upcrossing events oceurring at the /™ time step of each record is calculated
as:

M=, (1.40)

The estimate of the probability that the upcrossing event occurs at time instant 7, is:

; 1 &
p,=—> U, (141)

This value 1s a statistical estimate of infinitely small probability, dp, as mtroduced n
formula (1.15):

daplr=1)= \l:n’], 12 (1.42)

A7 0

Then, following the formula (1.22) the estimate of k', . the parameter of the Poisson
distribution estimated at the /" time step, is expressed as:

pz%. (1.43)
JAY)

H process x is stationary, the parameter of the Poisson distribution, A, does not depend on
time and the value )’ estimated for different time steps tends to the same limit with

increasing number of records. If the process x can also be considered ergodic (that 1s. the
statistical charactenstics of x can be estimated from one record if it is long enough). then
the estimates of ,)I' and }"' can be evaluated using all the time steps:

R T B A
/)=;Zpﬁzw Do

=] R =l j=|

b = m(k',)= : z,:ib‘,',

nN At 755

(144)

Regrouping formula (1.43), we sec that it contains the number of events in each record:
N, =>U, (1.45)
i=]

The value Ny 1s a random number represented by its sample. The volume of this sample
the number of records Ng. The mean value of this random number is estimated as:

VR

. l
m, =,_"ZNU (1.46)

Np =l

Substitution of formulac (1.45) and (1.46) into equation (1.44) yields:




F . m 3 m ‘~
2 =n4k,%=;§;=-;L (1.47)
R

Where: Tk is time duration of a record.

Formula (1.46) also allows an interpretation of the meaning of the A parameter of the
exponential distribution; that is the average number of crossings per unit of time also
known as the “rate of events”.

1.2.2. Confidence Interval for Rate of Events

Formula (1.47) also reveals the statistical meaning of the rate of events. 1t is a
value proportional to the average estimate of the number of events in each record.
Therefore, in order to calculate the confidence interval for the rate of events, it is enough
to find the confidence interval for m, .

The value ml‘, is an estimate of the mean of the random variable N;. This variable

has the binomial distribution, as it represents the number of upcrossings occurring within
a finite number of time steps. As the number of events is countable, this random variable
is discrete and it is defined by the following probability mass function (discrete
counterpart of PDF)

n—k

91
Sy =——pt (1= p) (1.48)

(n—=Fk)!

Whecre & is a number of crossings observed during the time duration of a record. In this
case, Ny, represents a realized sample of k. The theoretical mean value m; and variance
Vi of the binomial distribution (1.48) are known:

mg, =np; Vi, =np(l-p) (1.49)

The estimate of the mean value (1.46) is a random number as it is a sum of Nz random
variables, each of which has the binominal distribution with thc same parameter. The
distribution of the mean value estimate is important to the method of evaluating the
confidence interval.

Independent of is distribution, the variance of s, can be found as a variance of a

sum of independent variables:

; I & 1<
i) (£
,VR J /
[m,)}:m#
j=

N Ny

(1.50)

—
N

As the exact value of the variance Vy is not known, we substitute an estimate for it:



V(m;)z;:—(lmp') (1.51)

As equation (1.46) represents the sum of identically distributed random variables, the
distribution of the value m,' tends to normal, as sample size Ng increases (Central Limit

Theorem). Belenky, er al (2007) used this approach to evaluate the confidence interval
and found that the distribustion of the estimate is expressed as:

exp[—» (m—m(ml )) J (152)

(m)= =
/ 2V\m,

]
,/?_nl"im; '

It is known that the mean value estimate is unbiased; therefore. the mean value of the
estimatc 1s equal to itself:

m(m,' ) = m, (1.533)

The upper and lower boundaries of the confidence interval UB and LB must satisfy the
following equation:

UB "
B = J“/'(m)dm=F(UB)—F(LB) L Fm)= [f(2)d= (1.54)
1.B v

where [ 1s the accepted confidence level (typically 90% or 95%) and F(m) is the CDF.
To find the boundaries, the inverse function of the CDF, O(P), (also known as the
Quantile function) is introduced:

m=Q(P)= lnv{F(m)}: P =F(m) (1.55)

Where P is a probability. The inverse function returns the value corresponding to that
probability. Then:

LB=Q(I—BJ ; UB=Q[I—];B)=Q[]+B] (1.56)

2 2 D

L <

Recognizing that the normal distribution is symmetric around its mean value, the halt-
breadth of the confidence interval can be expressed as:

LB(m,')=m[ -&; L'B(m[ )=m[ € 8=QL¥J (1579

Here € is the half-breadth of the confidence interval. Typical values are:
e=K,-0
B=0.95: Ky =1.959964
B=0.9973: K, =3.0

Here o 1s the standard dcviation of the variable; the latter pair of values 1s also commonly
referred as the “six-sigma rule”.




Following (Belenky, er al, 2007), boundaries of the confidence interval for the
rate of events )" are defined as:

. LB(m,) . UB(m))
: A, =—m— 1.
low TR up TR ( 5 8)

Use of the normal distribution (1.52) 1s only justified if Ng is large as it 1s based on the
Central Limit Theorem. The question of how large Nk should be to employ the normal
distribution may require additional study.

At the same time, the sum of independent vartables with a binomial distribution,
all with the same parameter p, also have a binomuial distribution with the same parameter
p. but with a sum of the number of eases. If the number of cases are the same then the
new number of eases beecomes 2n. In the case of Ng records, the total number of cases
becomes:

N=N,-n (159

Then, the probability that Nz records, each with n time steps, will contain k uperossings
ean be expressed as:

P(k) pta-ptt (1.60)

“ KN —k)!
The formula (1.60) also can be interpreted as the probability mass distribution for the
number of uperossings for all the records:

= —N ” V-4
S )—mﬁ (I-p) (1.61)

The mean value for this distribution is:
m,, = Np (1.62)

Taking into aecount (1.44), the estimate for this mean value ts equal to the number of
erossings that were actually observed:

n Ny

My, =Np = Ngnp’ =" >'U, | (1.63)

= j=l

The varianee of the number of crossings aceording to distribution (1.60) ean be expressed
as follows:

Vi = Np(i=p) (1.64)
The estimate of this vananee is related to the Vl' estimate of the varianee of the number

of erossings during one reeord, as defined in (1.49) and L’(ml' ) the estimate of the

variance of the mean number of erossings per record from equation (1.51):



Vi =No (l—p ) =N ap' (1-p)= NV, =N, l'(m,‘ ) (1.65)

The boundaries of confidenee interval for the observed number of crossings for all the
records are still define by formula (1.56), interpreting Q as the mverse funetion of
binomial CDF of the number of erossing for all the records. As the binomial distribution
has non-zero skewness, symmetrical presentation (1.57) is not applicable:

LB(NU')—.QL% ';B) (1.66)

“

,

. UB(NU")=Q

The boundaries of the eonfidenee interval for the rate of events A . without the
assumption of normality, are defined as:
. _LB(NU") LB(NU") .. UBNU') UBNU")
N N, T, ="  N,nAt N,T,

(1.67)

Here 3, and )\‘”/‘ are the lower and upper boundarics of the contidence interval,

respecttully.

1.2.3. Numerical Example

Consider the process ot simulated wave elevations (from a linear model)
characterized by a Bretshneider speetrum ealculated for significant wave height //¢=11.5
m and modal period of 7, =16.4 s. Then the mean period 1s:

& =073, (1.68)
The following formulation of spectral density was used (see also Figure 1.1):
()= Ao expl- Bo ™), A=1731IT*; B=691T " (1.69)
40T

s(m), m’s

30T

20T

10T

1
T T

0.4 0.6 (

= ; + + |
0 0.2 ).8 |

Figure 1.1 Bretschneider Spectral Density Significant Wave Height H=11.5 m and Modal Period 7,
=16.4 s
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The wave-elevation time history for a fixed point of space was computed using an
inverse Fourier transform as follows:

N’w
G () =D 1y, cos(e,t +,) (1.70)
i=1

Here w; is a set of frequencies used for discretization of the spectral density (1.68), ru; 1s

amplitude of the /" component and ¢; is a phase shift for the i" eomponent.

The frequency set for this sample eonsists of uniformly spaced frequencies. The
number of frequencies has been chosen to avoid the self-repeating effect described in
(Belenky, et al., 2007). The total number of frequencics was 180, with 42 components
before the peak of the spectral density curvc and 138 after thc peak. The width of
frequency band was expressed through the frequency of the peak of the spectral density
curve.

Bnd(w)=1.150

wimax winax

=044s"; o, =— (1.71)

Then the frequency step i1s calculated as follows:

A = Bnd(o)

=0:.0032 ¢1.72)

The lower and upper limits frequencies are o, =0.25s' and o, =0.8245 "',

respectively. As the frequency spacing is uniform, the duration of a single rccord should
not exceed:
2n

=—=1968 s =32.8 min Cl.73)
Aw

TSmax
Taking into account (1.73), the time duration for a single record was set to 75=30 min.
To cnsure that this spectral discretization does not lead to the self-repeating effect, the
autocorrelation function needs to be checked:

o Nb)
R(7)= Is(m)cosmtdm; R = ZS,.cos(m,Ar-(i— 3 #=L2H (1.74)
i=|

0

Here the time step A7 = 0.5 s; S; is the value of the power speetrum at frequeney ©; and N,
is the number of time steps.

o, +0.5Aw, _,

e = Is(m)d(u = O.SA(D(S((D, -0.5Am) + s(ow, + O.SAOJ)) CLTS)

]
w, -0.5A0,

The autoeorrelation funetion is shown in Figurc 1.2. It can be seen from this figure there
is no self-repeating cffect.

The variance of wave elevations calculated from the discrctized spectrum should
also be chceked. As the frequeney band is limited, some energy at high frequencies was
not included in the discretized model.

16



N
V. = ZS, =78m; Oy = S, =2y Hy =de, =1117m (1.76)

i=l
Here V . is the variance of wave elevations as discretized, 6 ¢, is the standard deviation
and Hs, 1s the significant wave height as discretized. Because of the frequency truncation
limits, the significant wave height as discretized is slightly less than the input value of
11.5 m. The difference, however, 1s less than 3% and can be considered acceptable.

R;/R,

-0.5

-1
0 200 400 600 800 1000 1200 1400 1600 1800

Figure 1.2 Autocorrelation Function of Wave Elevations Calculated from Discretized Spectrum

The amplitudes of the wave components in (1.70) are calculated from discretized
power spectrum as:

Py = ZS,' (1.77)

Finally the phase shift ¢; 1s assumcd to bc a random variable uniformly distributed
from 0 to 2n. Each set of N,=180 phase angles corresponds to one record of 30 minutes.
The dataset used in this example includes 200 such rccords.

As shown in Figure 1.3 for the level of a=7.5 m, three crossings were found n the
first record

‘Vll':z(j:l:?) (1.78)
i=\
A total of 721 up-crossing cvents were observed for all the rccords:
n '\'R
W= D 4, =T8I (1.79)
i=l j=1

The total number of cases of the auxiliary variable U is:

N =N, -n=200-3599 =719800 (1.80)
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Figure 1.3. Record 1 of the Process of Wave Elevations; With Three Upcrossings Through a Level of
7.5 m

Using formula (1.45) the parameter of the Binomial Distribution, p, and the uperossing
rate, A, are estimated as:

1< 1 n Np

¥ =— ‘ = .. =\, l 2

p n;p, nNR;;u,_, 0.00100 (1.81)
o bt 0 ABGEL Lans

A =m )= NNRA,;;U,.J =0.002003s (1.82)

The theoretical value for the rate of events can be found by substitution of the Normal
Distribution (Equation 1.55) into Formula (1.19)

A= f(a) j 1(d)bd = =0.002055 s ' (1.83)

Formula (1.83) meludes the variance of the temporal derivative of wave elevations as
diseretized:

\-:n
Vig = Z:S,(:o,2 =177 m's' (1.84)
i=1

The theoretical value and estimate for upcrossing rate seem to be quite close, but

it cannot really be judged. The estimate of uperossing rate A* i1s a random number.
Therefore a confidence interval needs to be ealeulated in order to judge the closeness of
the estimate and theoretical value.

Two methods of caleulation of the econfidence interval for the uperossing rate
were considered in the section above. The first one considers the estimate of the average
number of ecrossings per record (see formula 1.45):

N,

S
m;, =N—ZNU =3.605 (1.85)

R j=!

This figure is assumed to follow normal distribution with the mean value equal to itself:

18



m(m[ )== m, = 3.605 (1.86)
The varianee of this estimate 1s:
; L,. . ..
V(m, )=—"—’—=%(l—p )=0.018007 (1.87)
“YiR ¥R

For a confidenee level of $=0.95, the half width of the eonfidenee nterval for p; 1s:

£=1.959964-\V|m, }=0.263007 (1.88)

This yields the following values for lower and upper boundary for the rate of uperossings
(see equation 1.57):

.om _C=O.001857; L +g

low — (77

R R

=0.002149 (1.89)

The seeond method is to caleulate the confidenee mterval for A direetly from the random
variable NU, using its binomial distribution with parameter p* estimated with formula
(1.79) with the boundaries defined by formulae (1.65)

N =72}
LB(NU") = Q[ : ;B) =669 : UB(NU')= Q[%) =774 LHae)
The boundaries of the econfidenee interval for A are given by formula (1.66):
o :%w.omss& x’,,,,=ﬂl%=o.oozls (1.91)

Both methods gave almost identieal results for the confidenee interval. The theoretical
value of the uperossing rate 1s contained within the confidence interval, as shown in
Figure 1.4.

0.0022 T T T |
- Thleorctleal i T Method 2
0.0021 va u: (binomial
distribution)

0.002

Method |
0.0019| (normal

distribution)
0.0018 ' l :

Figure 1.4 Confidence Intervals for the Upcrossing Rate Calculated with Normal or Binomial
Distribution for a Level of 7.5 m
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The reason the results of two different methods are so close 1s the relatively large
number of crossings. With a large sample, the binomial distribution of the total number
of crossings can be very well approximated with the normal distribution with the
following mean value and variance:

My, = NU" =721; Vy, =Np'(1-p’)=72028 (1.92)

The binomial distribution of total number of crossings with parameter p* and normal
distribution with mean value and varianee (1.90) are shown in Figure 1.5.

0.015 //\_\
SNU) / \ Normal  _______
/ \ : .
/ \ Binomial - =
/ \
0.01 / :
fl \
\
/ \
0.005 /rf \\
/ \
/ W
0 -*”/ \\-,,,.
600 650 700 750 800 850

Number of C rossin}g,s NU

Figure 1.5 Normal and Binomial Distribution of Number of Crossing for the Level 7.5 m

The difference between the two distributions ecan be slightly more 1f the level for
crossing is raised and number of crossings 1s less, but cven in the case of level 11 m with
only 10 crossings, the difference in confidence intervals caleulated with the two different
methods is not significant, see Figure 1.5 and Figure 1.6.

0.15

JS(NU) Normal & =ss-ees
HRA - Rast Binomial — —
4 \\
0.1 &4 A\
/7 ,.\\
7 \
/ \\
4 N\
/ N
0.05 / \Y
Py \
) =
() m———
0 5 10 15 20

Number of Crossings NU

Figure 1.6. Normal and Binomial Distribution of Number of Crossings for the Level 11 m
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Figure 1.7. Confidence Intervals for the Upcrossing Rate Calculated with Normal and Binomial
Distributions for a Level of 11.0 m

1.2.4. Mean Time Before and Between Events

An estimate for the rate of events can also be evaluated from statistics of time
before or between events using formula (1.35). This provides an important hink to
reliability engineering, where time to failure is one of the principal metrics.

In general, stability failure can be considered in terms of conventional rehability
theory (Sevastianov, 1963, 1994). Most of engineering practice in rehability works with
statistics of time-to-failure, where the Exponential Distribution is only one of many
models used (sce, for example Meekar and Escobar 1998). One of the authors applied
this approach for stability failures using statistical data resulting from numerical
simulation (Ayyub, et al 2006). These data included time before failure, so a classic
rcliability approach was used. The main advantage of such an approach is that it does not
require a-priori knowledge of the distribution of time before or between the failures.
While an exponential distribution was used, it 1s not required and any other appropriate
model could be applied.

The assumption that time before or between failures follows an exponential
distribution allows significant simplification of the problem as only one parameter needs
to be estimated. As shown above, the exponential distribution is derived formally from
upcrossing theory assuming the independence of upcrossings (this assumption is
considered in details in the next section). The exponential distribution connects the mean
number of uperossings and parameters of the distribution of time before or between the
failures.

The assumption of an exponential distribution docs not contradict to cxperimental
results obtained by Ananiev and Savchuck (1982). A description of these experiments (in
English) 1s available from Belenky and Sevastianov (2007).

Once thc exponential distribution 1s accepted a-priori, it can be demonstrated that
counting events provides a more etficient way to estimate the distribution parameters. To
carry out such a demonstration, the wave dataset deseribed above was used. In addition
to counting uperossings, a sample of time between crossings (including the intcrval
between the start and the first crossing) and a sample of intervals before the first crossing
have been populated:
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Ter, =t,,, -t k=12..N, (1.93)

i+l (&

Here Tcr is the set of time intervals between upcrossings, index 7 relates to /™

crossing oceurring atjlh record, & 1s a counter for upcrossing for the entire dataset and N,,
is total number of uperossings in the dataset:

T, =1, (1.94)
Here Tfis time before the first upcrossing and the index j refers to /™ record.

The estimate of the mean value for the time between and before the crossings is:

-
my, =—ZTC}‘,‘ (1.95)
Nu- k=1

The estimate m;‘,, 1s a random number, as i1t is a finite sum of random variables

with an exponential distribution. The distribution of a sum tends to normal per the
Central Limit Theorem (Strictly speaking, it is a truncated normal distribution as the
estimate of mean time cannot be negative).

As the mean value 1s an unbiased estimate, the mean value of its distribution
equals to the estimate itself (1.93), while the variance is expressed as:

7t

V(m.;.(_r) = A;” (1.96)

or

The variance of time between upcrossings ¥, can be estimated as:

. | Y o &
Vie = Nl ;(Tcrk —mm) (1.97)

Then, the estimate of the mean time between crossings is expressed as:

Pyy = Mgy + KV () Firg = Mg — Kl,,/V(mn_,‘) (1.98)

Here m;,(_,_l and m;ﬂ are upper and lower confidence interval boundaries of the cstimate.

The estimate of the upcrossing rate can then be expressed as:

* * f l L - 9 l - - I
Ay = (’"r.-r) s Ay = (’”ru-l.) y oAy = ("’nrt') (1.99)
Where ). is the uperossing rate cstimate based on time between uperossings while 1,

and 3, are the upper and lower boundaries of the confidence interval, respectively.

Another estimate can be evaluated using only time interval before the first
uperossing:
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; | &
m,,, =— > Tf, (1.100)
Y Fer k=l

Here Ny, is number of records with at least one upcrossing. The boundaries of the
confidenee interval are calculated in a manner similar to formulae (1.94-1.97)

& ] ey s e R 74

Ve, =——— (T -m,.} 3 Vim,)=—to (1.101)
‘\ For l k=1 "VI-'.'/'

Py = W, & Km/V(m;“) W, =M, = KMH'(m;‘,,,) (1.102)

XFT = (’”;rr) | ) )‘.H = (,’";«-r/) | : }"/-‘/ = (’”;'.-rl ) I (1.103)

Here p7; 1s the estimate of the variance of the time before the first uperossing. | (m, )
is the estimate of the variance of the mean of time before the first upcrossing. s, , and

m,,,, arc the upper and lower boundaries of the confidence interval for the mean time

I
based on the time before the first erossing and its upper and lower boundaries,
respectively.

before the first crossing. 27,27, , and A, arc the estimates of the upcrossing rate

Figure 1.8 compares the theoretical rate of upcrossing for a level of 5 m with
estimates carricd out with several methods. The data sct consists of 5407 events based on
the previously described numerical cxample. As is can be seen from this figure, all the
cstimates contain the theorctical value in their eonfidence intervals, therefore all the
methods wcre able to yield correct result in this case. It is also clear from the Figure 1.8
that the methods based on counting of events and time between cvents provide better
estimates then the method based on the time to the first upcrossing. as the latter one
utilizes a smaller sample.

Figure 1.9 eompares theoretieal rate of uperossing for a level of 9 m with
estimates carried out with several methods. The data set consists of 153 upcrossings
totally and 111 first uperossings. The estimates obtamed with time between or before the
crossing(s) do not inelude the theoretieal value in their eonfidence intervals, while the
mcthod bascd on counting cvents still yiclds a correct estimate.

The rcason why time-based estimates are biased is that the sample is hmited m
tume. It eannot include any data beyond the length of a record. Therefore the mean time
before the erossing is biased towards simaller values and rate of cvents overestimatcs the
true value. The standard way of correcting such a bias is a proccdure of eensoring (sce.
for example Meekar and Escobar, 1998).
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Figure 1.8. Comparison of Different Methods to Estimate Upcrossing Rate for the Numerical
Example for a Level of 5 m (Total Number of Uperossings 5407).
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Figure 1.9. Comparison of Different Methods to Estimate Upcrossing Rate for the Numerical
Example for a Level 9 m (Total Number of Upcrossings 153).
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Subsequently a censoring procedure (Ayyub, ¢t al, 2006) was applied to estimate
the rate of events from time intervals before the first upcrossing. The sample 1s made up
in the following way:

o, if N,>0

Tfc. = 1.104
b fof . if N, =0 ( )

The censored mean time before the first crossing 1s cxpressed as

. l Np ] )
Mre =5 ; Tfc, (1.105)

Here Ng is a number of records while Ny, i1s the number of records with at least one
upcrossing.

Direct evaluation of the confidence interval of the censored mean may present
certain difficulties. If the number of observed crossings is small, the variance estimate of
the censorcd data also tends to be small as most of the data points equals to the duration
of simulation. Small variance estimate lcads to a narrow confidence interval; this creates
a paradox as decreasing of the sample size is expected to increase statistical uncertainty.
This paradox 1s caused by the fact that censored data arc cxpected to estimate bounds, not
the actual value; see, for example, (Meekar and Escobar 1998). Generally eensoring the
data does not increase or decrcase the statistical uncertainty. Therefore, the width of
confidence mterval for the uncensored mean estimate can be used with censored mean
estimate;

M =(,’”1‘(')

Here )Cﬂ._ x'm : )C“.I are the estimated event ratcs based on the eensored time betore the

.
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first crossing and its upper and lower boundarics, respectively.

Figure 1.10 compares theoretical rate of events with statistical values estimated
with two diffcrent methods; the level of upcrossings was equal to 9 m and the sample size
was | 11. The rate of events estimated with time between cvents is not considered here, as
it 1s not clear how to eensor this type of data.

As 1t can be seen from Figure 1.10, the censoring removed the bias observed in
Figure 1.9; so both methods have shown a correct estimate for the example considered.
The confidence interval for the second method (based on censored time to the first event)
1s slightly wider, as a sample size for the time before the first upcrossing is less than the
sample size for counting crossings (111 vs. 153; 34 records had more than onc
uperossing).
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Figure 1.10. Comparison of Different Methods to Estimate Upcrossing Rate for the Numerical
Example for a Level of 9 m (Total Number of Upcrossings 153, Number of First Upcrossings 111).

1.3.Distributions Related with Upcrossing Events

1.3.1. Limitations of Poisson Distribution

As it was shown in the previous section, the derivation of the Poisson distribution
leads to a very important practical result: the distribution of time before or between
crossings is exponential. To characterize the exponential distribution, only one parameter
has to be estimated. This parameter is the average number of uperossings per unit of time
(mean upcrossing rate). It is equivalent to the inverse of the average time
before/between erossings. Onee this parameter is known, the probability of at least onc
erossing can be trivially evaluated for any given time of exposure.

The dcrivation of the Poisson and exponential distributions were, however, not
free of assumptions. Application of the binomial distribution assumes repeating
independent Bemoulli trials on each time step. A Bemoulli trial is a random event that
can produce only two outcomes, usually called “sucecess” or “failure”. These outcomes
are related here to either the occurrenec or non-occurrenee of an upcrossing at this instant
of time.

The independence of Bermoulli trials, however, is not always guaranteed for the
upcrossing of a general stochastic process (i.e. it is not a white noise and its
autocorrelation funetion is generally not a delta-funetion). Stochastic processes, such as
wave elevation, wave slope, or roll angle, posseses a certain amount of inertia. The
instantancous value of the proecess cannot change abruptly. Therefore the values in
neighboring time steps are dependent, provided the time step is reasonably small. This
dependence has a finite duration and the time it takes the autocorrelation function to drop
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below a given level is often used as a measure of this dependence. As it can be seen from
Figure 1.11 (a zoomed in version of Figure 1.2), 1t takes 40-45 seeonds for this
autocorrclation to dic out to a level below 0.05. While this criterton remains somewhat
arbitrary, 1t can still be uscd in the first expansion. For a Guassian (normal) process, the
autocorrclation function capturcs all of the information about dependence. For non-
Guassian processcs, the absencc of correlation does not guarantec independence.

|
R, R|

0 20 40 60 R0 100

Figure 1.11. Sample Autocorrelation Function (Zoomed in From Figure 1.2)
Therefore, 1f tme between neighboring upcrossing events exceeds the tume for
autocorrelation function to die out, one can assume these events are independent. The
time between the events, however, 1s a random number: thercfore, the judgment on
independence only can be madc 1n probabilistic sense.

Since the exponential distribution of the time before and between the events s the
most important consequence of the Poisson distribution, it makes sense to evaluate 1f
such hypothesis contradicts observed data. Standard statistical procedures used for these
purposes can be employed as part of the procedure to test if impendence of upcrossing
can be assumed and Poisson distribution 1s applicable.

1.3.2. Distribution of Time before Event

Following the previous works of Ayyub, er a/ (2006) and Belenky, er a/ (2007), a
sample of ime before the first upcrossing is analyzed. This analysis is carried out for
several crossing levels to examine the influence of the dependence between crossings and
sample size on the statistical estimates of the upcrossing rate.

For the given example with a Gaussian distribution, the theoretical mean time
before of between events may be calculated by simply inverting formula (1.20) or (1.83):

my., =| f(a@) [ £(§)db (1.107)

Formula (1.107) 1s an exponential funetion. The dependenec is depicted in Figure
I.12 for the wave example considered in this section. [t can be seen from this figure that
the time for the autocorrelation function to die out corresponds to a level of 4.2-4.4 m.
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Figure 1.12. Theoretical mean time before ore between upcrossing events shown as a function of
level of upcrossing a

It i1s well known the mean value and standard deviation of the exponential
distribution are identical. This condition was analyzed by Belenky er al (2007) as a
possible indicator of the applicability of the Poisson distribution and it was shown to not
be the best way. At the same time, a lower boundary of their confidence interval
compared with the autocorrelation decay time may produec relevant information.

The estimate of the mean value and variance of the time before the first event is
given by formula (1.98) and (1.99), while the confidence interval for mean value estimate
can be caleulated with formulae (1.100). In order to calculate confidenec interval for the
variance estimate, the value of the fourth central moment M, is necessary:

1 N_3 .2

Viyy=—M,————V")’
Wl N(N_l)( ) (1.108)

Herc N is number of points and V" is estimate of variance. Estimating the fourth central

moment directly form a statistical sample is known to be difficult, due to sensitivity of
the numerical values to outliers. Therefore expressing a fourth moment through the
variance using a certain assumption of the character of distribution has been a standard
technique. As the distribution of the time before the first event is expected to be
exponential, Belenky, er al (2007) used the relation derived from the cxponential
distribution:

M,=9.)? (1.109)

This leads to the following expression for the variance of the variance estimate:
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T g s (1.110)
N(N -1
Once the mean value and variance of the variance estimate are tound, a normal
distribution 1s used to find boundaries of the confidence intcrval. This approach s quite
common, however, caution should be exercised, as the normal distribution i1s defined
from -o0 to +o0, while variance by the definition 1s a non-negative value. Theretore, an
additional check 1s needed or the distribution must be truncated at zero.

VI: rl = VI'.r'I' s Kﬂ V L’(Vf'.."l') Vf'.rrl. = l'I'.rr == KB V(Vf.u ) ( l I l l )

The standard deviation is calculated:

- . -

SR . . . o g . o 2 o
Gf‘ r Ll‘w 3 cyf'('l'l =yF Fert ? Gl'n'l =4} Ferl ( 1. I I‘-)

The results are shown in Figure 1.13 for the level of crossing of 5 m. As it can be
secn, the estimates of the mcan value and standard deviation are statistically identical.
Also the lower boundary of the mean value is above 50 seconds, i.e., more than the
interval of time for the autocorrelation function to die out. Both of thesc observations are
symptoms of the exponential distribution.
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Figure 1.13. Estimates of mean value and standard deviation for time hefore the first event. Level of
crossing Sm, 200 crossings total.

Figure 1.14 shows a histogram, the theoretical distribution, and three distributions
based on differcnt statistical parameters. For the level at 5m, all 200 records had at least
one upcrossing, so the size of the sample equals 200. The bin width for the histogram was
calculated as (Scott, 1979):

_ .58,

W - (1.113)

The histogram in Figure 1.14 is presented in terms of PDF:

H,
h’:ﬂ (]|]4)

Here H; is the number of cases that fits in thejlh bin and N is total number of cases.

A Pearson chi-square goodness-of-fit test was performed for each of the distributions.
~ ) i

The value of y°, number of degrees of frecdom d, and P(x’.d) — probability that the

differcnce between the fit and the histogram is caused by random reasons arc also placed

into Figure 1.14. The test shows that the fit is good for all four curves, as the probubility
is well above the accepted significance value of 0.05.
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Figure 1.14. Distribution of time intervals before the first crossing. Level of crossing Sm, 200
crossings total.

Another example considered above was for 9 m level of crossing. The importance
of this example is that it contains 89 records without any upcrossings, so the effect of the
censoring technique can be demonstrated. Figure 1.15 shows a histogram (in terms of
PDF) along with distribution curves using different parameters as well as results of
Pearson chi-square goodness-of-fit test. The insert shows estimates for mean value and
standard deviation with the appropriate confidence interval.
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Figure 1.15. Histogram of Time Before the First Crossing for a Level of 9m (111 Crossings Total)
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The estimates of thc mean value and standard deviation are statistically ditferent;
their confidence intervals do not have any overlap. None of the curves fit the histogram.
Obviously, the hypothesis of an exponential distribution is not supported by the observed
data. At thc same time, it is known from the upcrossing theory (and was shown m the
derivations above) that ime intervals before the first crossing must follow an exponential
distribution 1f the number of upcrossings follows a Poisson distribution.

The most important condition to satisfy is the independence of upcrossings. For
thc considered example with a Gaussian proccss, independencc of upcrossings is
achieved when the time between the neighboring upcrossings exceeds the time for the
autocorrelation function to die out. Increasing the level of crossing increases the mean
value of the time before uperossing from about 60 seconds for a level of 5 m to about 800
seconds for a level of 9m. At the same time, the hypothesis of an exponential
distribution was not rejected for a level of 5 m, but was rejected for a level of 9 m. The
rcason for this rcjection is likely to be unrelated to the applicability of the Poisson
distribution to the number of crossings.

In a sense, a similar situation was observed in Figure 1.9, where the results for
upcrossing rates calculated by counting events or averaging the time bcfore the first event
were found to be drastically different. The reason for the difference was the hmited
simulation duration, which can bias the average time, but not thc number of events. This
discrepancy was resolved by censoring the data of time intervals before the first
upcrossing, where it was assumed that more upcrossings could be encountered if the
duration of records would be longer.

The same assumption can be madc for a histogram, as wcll, by adjusting the total
number of cascs:

; H,

e S CEHS

Y ‘1/’ b ANR )
Here Ng =200 i1s the total number of records. Obviously, the normalization condition for
this expression is no longer met, as the rest of the data is assumed to be beyond the length
of a record.

The “censored™ histogram is shown in Figure 1.16 along with the same set of
distnibution curves. The Pearson chi-square goodness-of-fit test has shown that only the
curve based on uncensored average time before the first upcrossing does not fit the data.
All other curves show robust agrecment with the data.

To complete the examination of the time before the first upcrossing, we now
cxaminc cases where the conditions for a Poissonian process are violated. The crossing
level has been set to 3 m where 15201 upcrossings were observed. As it can be seen
from Figure 1.17, most of upcrossings are clustered and there arc many cascs when
neighboring pceriods have upcrossings. At the same time, somc peaks remain below the
level and some of the time between crossings may be longer than just a period.
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Figure 1.16. Censored Histogram of Time Before the First Crossing For a Level of 9 m (111
Crossings Total)
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Figure 1.17. Record 1 of the Process of Wave Elevations; Upcrossing Level 3 m

Figure 1.18 shows a histogram of the time before the first upcrossing. The
estimates for the mean value and variance (with confindence interval) are shown in the
inset of the figure. Despite the fact that these estimatcs are statistically equal, the entire
confidence intcrval of the mean value estimate 1s well below 40 seconds— thc time
duration needed for the autocorrelation function to die out.

A Pearson chi-square goodness-of-fit test rejects the exponential distribution
based on the theoretical upcrossing ratc as well as based on the upcrossing rate estimated
from counting of events. At the same time, the test does not reject the exponential
distribution based on estimate of mean time beforc the first upcrossing (there is no
difference between censored and uncensored mean values, as cvery record has at least
one upcrossing). These results may seem confusing, but certain conclusions can still be
drawn.
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Figure 1.18. Distribution of time intervals before the first crossing. Level of erossing 3 m, 200
crossings total.

The equality of mean value and standard deviation 1s a necessary. but not a
sufficient condition for the exponential distribution. [f the mean value and standard
deviation (including confidence interval extents) are smaller than the time required for
the autocorrelation function to die out, the Poisson distribution is likely inapplicable due
to data dcpendence. The entire confidence interval laying in the domain, where
autocorrelation still is not insignificant (sce Figure 1.11), suggests possible dependence
of neighbor upcrossing and therefore the inapplicability of Poisson distribution.

There 1s a difference between the uperossing rate calculated from the mean value
of time before the upcrossing and by the counting of cvents, exhibited in the different
outcomes of the goodness-of-fit test. Based on the previous paragraph. the difference
between the two could be explained by insufficient duration of a record or dependence of
neighboring upcrossing resulting in violation of the Poisson distribution. Since every
record has at least one upcrossing, there is no difference between censored and
uncensored data. Therefore, the reason for the discrepancy is the violation ot Poisson
distribution.

The derivation of the theoretical formula for upcrossing rate (equations 1.10-1.19)
relied only on the assumptions of continuity and stationarity, but not on the assumption ot
the Poisson distribution. The formula (1.20) is correct for any level of crossing and the
theoretical curve in Figure 1.19 can be considered as a true answer. This confirms the
conclusion made above on the non-Poissonian character of the distribution of the number
of upcrossings for the level of 3m.

Further lowering the crossing level down to 1 m in order to observe what
changes, if any, there are, we see an upcrossing on almost every period, see Figure 1.19.
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Figure 1.19. Record 1 of the Process of Wave Elevations; Upcrossing Level 1 m

Figure 1.20 shows a histogram of time before the first crossing (in terms of PDF)
for the level of crossing of Im along with estimates of mean value and standard
deviations. In contrast with the previous example, with 3 m level of crossing, there 1s no
indication of the applicability of thc exponcntial distribution for the time before the first
crossing or the Poisson distribution for the number of upcrossings.
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— Theoretical Distribution Density; x’=49.3 d=9 P(3x*.)=1.47 107
—— Based on Average Number per Unil of Time; ¥°=49.4 d=8 P(x’.d)= 5.41 107
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Figure 1.20. Distribution of Time Before the First Crossing for a Level 1 m (200 Crossings Total)

The histogram shows a peak around 5 seconds. This is a little short than a half of
the mean zero-crossing period of 11.6 seconds and, probably rcprcsents the most
probable time from the start until the first upcrossing is encountered.

Note that if a record starts above the given level, the first upcrossing will only be
detected when the process comes back below the level and crosses it again. This may
have an influence on the shape of the histogram.
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1.3.3. Distribution of the Time Between Events

The derivation of the formulae for the time between and before events (1.30-1.37)
is based on the Poisson distribution for the number of uperossings and targets a time
without uperossings. This random number can be interpreted as the time before the first
upcrossing or as the time between upcrossings. Therefore, the exponential distribution
must be equally applicable to both these random variables. Consideration of the
distribution of time before the first event, as in the section above, has shown that the
duration of a record 1s another major factor. In order to demonstrate the exponential
distribution statistically the records have to be long enough, so all (or a statistically
significant number) of records must have at least one uperossing in addition to satistying
Poisson distribution econditions.

The objective of this section is to demonstrate, with numcrical examples, how the
upcrossing level affccts the statistical distribution of time between events. Setting the
lower level gives a statistically significant number of upcrossings (or rccords with
upcrossings), but may lead to a violation of the Poisson distribution condition, it
uperossings oceur too frequently to be independent random events. On the other hand, if
the level is too high, the duration of a reecord may be insufficient.

Figure 1.21 shows a histogram (in terms of PDF) of time imtervals between
upcrossings along with estimates of mean value and standard deviation. Results of
Pearson chi-square goodness-of-fit tests are also shown for the five curves as specified in
the figure. The confidence intervals of the mean value and standard dcviation have
significant overlap. Also, the lower boundary of the confidence interval for the mean
value estimate is about 340 seconds, enough time for the autocorrelation funetion to die
out, so applicability of the exponential distribution is not exeluded. The shape of the
histogram also suggests exponential distribution.
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Figure 1.21. Distribution of Time Between Upcrossings for a Level of 7.5 m (721 Crossings Total, 196
Records with at Least One Crossing)
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As indicated above, five different curve fits were tried. All of these curves werc
exponential distributions but the parameter was calculated differently.. The Pcarson chi-
square goodncss-of-fit test shows that thrce of the methods for selecting the distribution
parameter yield a fitted distribution that is not rejected (the probability is greater and
0.05, the generally accepted significance level), that is the curves match the data. At the
same timc two curves show a probability less than 0.05, so the hypothesis is rejected;
mcaning that these particular curves do not match the data.

The distribution parameter calculated through averaging of the intervals between
upcrossings (1.95) passes the test. This confirms thc above observation on exponcntial
charactcr of the distribution, in general.

Howevcr, theoretical distribution does not match the data. The distribution
parameter was calculated by formula (1.83) using variance of wave elevations and their
derivatives “as discretized”. This discrepancy is caused by an insufficient length of
record for this particular level of crossing (Belenky, ef al, 2007). The reason is that the
sample is limited by the length of a record and intervals between upcrossing longer than
duration of a record are absent from the sample. These intervals are statistically
significant for the level of 7.5 m.

The rate of events calculated as an average numbcr of upcrossings per unit of time
(1.82) was found to be quite closc to the theoretical value, see Figure 1.22. Thereforc,
the cxponcential distribution based on this value is very close to theoretical one. Then for
the samc rcason, as the theoretical one, it is rejectcd by the observed data; as the intervals
between upcrossings that are longer than the duration of a record still have statistical
significance for the considered level.

0.003

between time to 1°
events eve

Time { Censored

0.0025
Theorctical

value i
o ---J ____Uncensored | __

0.002 time to 1

Count of €vent
events

0.0015

Figure 1.22. Comparison of Different Methods to Estimate the Parameter of the Exponential
Distribution (Upcrossing Rate) for a Level of 7.5 m (721 Crossings Total, 196 Records With at Least
One Crossing)

The distribution based on the uncensored average time before the first upcrossing,
1s not rejected by the observed data. This method gives similar results to the one based
on average time between the upcrossing, sec also Figurc 1.22. It is suggested by both
Figures Figure 1.21 and Figure 1.22 that the averagc time before the 1*' upcrossing has a
bias Icading to overestimation the rate of events, as was discussed in the previous section.
This is notable, that the bias exists for the level of 7.5 m, with only 4 records without
upcrossing, however it was enough to move the estimate away from the theoretical
solution and provide a significant probability that the fit to biased data is good.

The censoring procedure moves the estimate back to the theoretical solution;
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however, the relatively wide confidence interval still allows the goodness-ot-fit test not to
reject the distribution based on censored average time before the first crossing.

Figure 1.23 shows a histogram (in terms of PDF) of time intervals between
upcrossing along with estimates of the mean value and standard deviation ealculated for
a level of 9 m. The results of the Pearson chi-square goodness-of-fit test are also shown
for five curves as specified in the figure. None of them fit. Confidence intervals for
estimates of the mean value and standard deviation do not have any overlap. Similar
observations were made for distribution of time intervals before the first erossing, see
Figure 1.15. However, the “censored™ histogram in Figure 1.16 has contirmed that this
was the case when there is a significant deficiency in the duration of the records. as the
censored data confirms that the distribution is, in fact, exponential.

AT

0.00157 Time . s
10004 P
??JI,. "
R0 3
0.0011 B o
l Gf. r

400

200

0.0005 L \

::—] I.s

0 500 1000 1500 2000

— Theoretical Distribution Density; y"=80.2 d=4 P(x*.d)=0.0

—— Based on Average Number per Unit of Time: )g:=78.5.4 d=4 Py’ .d)= 0.0
Based on Average Time before 1st Crossing ¥°=22.8 d=4 P(y".d)=0.000133

—— Based on Average Censored Time before Ist Crossing x'=71.3 d=4 P(y".d)=1.2 10"
Based on Average Time between Crossing y°=28.37 d=4 P(y".d)=0.00001

Figure 1.23. Distribution of Time Between Upcrossings For a Level of 9 m (153 Crossings Total, 111
Records with at L.east One Crossing)

It is not clear how censoring can be applied for time intervals between the events;
therefore, the case in Figure 1.23 cannot be resolved with this kind of statistics. In
reality, the distribution, of course, must be exponential, as increasing the level cannot
lead to violation of the Poisson distribution.

Comparing Figure 1.22 and Figure 1.23 is useful as it shows a tendency in the
behavior of the curves when the level 1s increased. The theoretical distribution
practically coincides with the curves based on average number of uperossings per unit of
time and on censored average time before the first uperossing. The curves based on
uncensored average time before the first upcrossing and average time between upcrossing
move away from theoretical distribution, but remain close to each other. This tendeney
can also be seen in Figure 1.8 and Figure 1.9.

The opposite tendency can be observed when the crossing level is lowered, see
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Figure 1.24. All five curves are visually closer to each other in comparison with Figure
1.21.  Appearance of the histogram also suggests thc exponcntial character of
distribution. The confidence intervals for the estimates of the mean value and standard
dcviation have significant overlap. This also suggests that the exponential distribution is
possibly apphcable.
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— Theoretical Distribution Density; x°=28.0 d=18 P(x’.d)=0.062
—— Based on Average Number per Unit of Time: x"=34.9 d=17 P(y’ .d)= 0.0064
— Based on Average Time before 1st Crossing y’=24.1 d=17 P(y".d)=0.12
—— Based on Average Censored Time before 1st Crossing x’=24.1 d=17 P(x’,d)=0.12
Based on Average Time between Crossing x’=22.3 d=17 P(y".d)=0.17

Figure 1.24. Distribution of Time Between Upcrossings For a Level of 6.75 m (1421 Crossings Total,
All 200 records With at least One Crossing)

Only the distribution based on average number of crossings per unit of timc is
rejected by the goodness-of-fit test, while all other fits are supportcd by the data. The
reason can be seen in Figure 1.25, where all the parameters are compared. First, the rate
calculated as an averagc of time between the upcrossing still is different from the
theoretical value. Apparently, duration of the record is still insufficient. The rate of
upcrossing in Figure 1.25 calculated by counting includes the theoretical solution in its
confidence interval, but the middle of the confidence interval happens to be a bit lower
than the theoretical solution. This small difference was enough to reject the distribution
based on counting of events.

Further lowering the crossing level (5.75 m) leads to an uncxpected result: none
of thc curves fit the data, however all the curves are very close to each other, see Figure
1.26. At the same time, estimates of mean value and standard dcviation have substantial
overlap. In addition, thc lower boundary of the 95% confidence interval lies around 100
seconds. This is still enough time for the autocorrelation function to die out. Detailed
analysis shows that the absence of agreement is due to the value at thc first bin; it is
noticeably higher than expected. Additionally, the value at the second bin seems to be a
bit lower. This may suggest some sensitivity to width of the bin that was calculated with
formula (1.113) so far. A relatively small change of the bin width, from 23.9 s (Figure
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1.26 upper) to 30 s (Figure 1.26 lower), climinatcs this effect.  All of the curves arc
supported by the data in the lower histogram shown 1n Figure 1.26.

Time Censored time
0.005 beteveei to 1" event
events
0.0045
Theoretical
value
0.004
Count 0
0.0035 cvents Uncensored time
to 1" event

Figure 1.25. Comparison of Different Methods to estimate parameter of the exponential distribution
(upcrossing rate). Level of crossing 6.75 m, 1421 crossings total, all 200 records with at least one
crossing

Figurc 1.27 shows histograms for the crossing level of 5 m. The top histogram in
the figure shows the histogram with bin width according to formula (1.113); similar to
the previous casc, all the curves are very close to each other, but none of them fit the
data. Now the value in the first bin i1s very small. while the sccond bin gives a very large
number. [t is still possible to makc curves fit by a manual change of the bin width.
However, the required change 1s much larger, increasing the bin width from 12 s (upper
histogram in Figure 1.27) to 36 s (lower histogram in Figure 1.27). Setting the maximum
time to 400 s was also needed in order to acheve satisfactory goodness-of-fit.

At the same time, other symptoms of exponential distribution are still present: the
cstimates of the mean value and the standard deviation show substantial overlap m their
confidence intervals. The lower boundary of the eonfidenee interval for the mean value
estimate is about 62 seconds, still enough time for the autocorrelation funetion to die out.

The first bin of the upper histogram in Figure 1.26 and the second bin of the upper
histogram in Figure 1.27 correspond to the value of 10-15 scconds. This range includes
the mean period of the stochastic process. This may indicate that the reason the
histogram deviates from the exponential distribution is the presenee of wave groups. The
level is low cnough so that successive waves in a group all cross it.  As these wave
groups are still rarc, they cannot yet break the Poisson distribution completely. Some
intcgral characteristics are still present. At the same time, they arc frcquent enough to
causc a local distortion of the exponential distribution, which is deteeted by the chi-
square goodness-of-fit test.
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— Theoretical Distribution Density; x’=32.9 d=23 P(x",d)=0.084
—— Based on Average Number per Unit of Time; ¥’=33.2 d=22 P(x".d)= 0.059
Based on Average Time before 1st Crossing x'=31.1 d=22 P(3x".d)=0.094

—— Based on Average Censored Time before Ist Crossing x*=31.1 d=22 P(x’.d)=0.094
Based on Average Time between Crossing x°=25.7 d=22 P(x’.d)=0.27

Figure 1.26. Distribution of Time Between Upcrossings For a Level of 5.75 m (3269 Crossings Total,
All 200 Records With at Least One Crossing)
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— Theoretical Distribution Density; x’=11.4 d=11 P(y” d)=0.41

—— Based on Average Number per Unit of Time; y*=17.6 d=10 P(yx" )= 0.062
Based on Average Time before 1st Crossing ¥ =14.6 d=10 P(y".d)=0.15

—— Based on Average Censored Time before 1st Crossing x°=14.6 d=10 P(x".d)=0.15
Based on Average Time between Crossing 3°=6.12 d=10 P(yx".d)=0.80

Figure 1.27. Distribution of Time Between Upcrossings For a Level of 5§ m (5407 Crossings Total, All
200 Records With at Least One Crossing)

To complete the study of intluence of the crossing level, two more distributions
are considered here. At the level of 3 m, shown in Figure 1.28, the estimates of the mean
value and standard deviation do not have any overlap of confidence intervals. Both
confidence intervals are very small, as would be expected from a sample containing
15,201 data points. The mean value range is below 25 seconds, where the autocorrelation
function has not entirely decayed. The curves are separated in two groups, as the mean
value of time before the first upcrossing is apparently no longer equal to mean time
before the events nor is it equal to the inverse of the event rate.
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Figure 1.28. Distribution of Time Between Upcrossings For a Level of 3 m (15201 Crossings Total,
All 200 Records With at Least One Crossing)

The histogram in Figure 1.28 demonstrates a pronounced pcak around 10-15
seeonds; its character is obviously not exponential. A similar picture can be seen when
the level is set to 1 m, see Figure 1.29. The separation of the two groups of curves is
even larger, while the shape of histogram may bear some resemblancc to thc normal
distribution.
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Figure 1.29. Distribution of Time Between Upcrossings For a Level of 1 m (25543 Crossings Total,
All 200 Records With at Least One Crossing)
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1.3.4. Cumulative Distribution of Time between Events

The derivations (1.30-1.37) prove that time interval between upcrossings must
follow an exponential distribution 1f the number of uperossings during a fixed time is
govermed by the Poisson distribution. However an attempt to use statisties for the ume
interval between uperossings encounters certain difficulties. Computing the upcrossing
rate calculated as the inverse of the average time between uperossings may be prone to a
bias, which 1s caused by nsufficient record duration.

Therefore, 1t 1s desirable to have another method to eheek 1f the assumption of a
Poisson distribution is still valid, that would be free of drawbacks deseribed above. One
such method was described by Belenky, er al., (2007). This method was based on
estimating the probability of at least one upcrossing during a given time span.

Consider a time interval from a time instance ¢, until 7. with the duration AT~ /.-
t,. The probability that at least one uperossing oceurs during this time interval is
estimated as:

PT‘(k;tO):l—N‘—"' (1.116)

YR

Here k is number of uperossings, Ni-g is a number of reeords without a single upcrossing
within the given interval and Ng 1s total number of records available. This ealculation is
illustrated 1n Figure 1.30, where upcrossings are shown as black dots. For the example
shown in this figure, the probability of at least one uperossing from the instant 7, to the
instant 7. 1s 0.75. Only one record out of tour did not have any upcrossings during the
interval 7.

e+ — e - ee e e
@ @ . g @ © &
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{) lo

Figure 1.30. On Estimation of the Probability of at Least One Event During Given Interval T

This estimate tends to theoretical probability as the number of reeords goes to infinity:

Pr(k¢0)=Jin1(P;(k¢0))= V]il])[lw%%) (L1
R R*’~ Ny

Assuming a Poisson distribution and for the number of uperossings leads to the following
expression:




lim(l—%)zl’,(k¢O)=l—exp(—kAT) (1.118)

Npg—px
A R

Here A 1s the theoretical upcrossing ratc. For a finite number of rccords, equation (1.116)
can be expressed in terms of the estimate of the ratc A.”:

l—%zl—exp(—l’AT) (1.119)

R

Where the estimate of rate 1" can be evaluated as:

p Bt
N = ——1n[ﬂJ (1.120)
AT | N,

As it was shown above (see formula 1.33), expression (1.117) can be interpreted as an
cstimate of the CDF of the time between crossings calculated for argument AT:

F‘(AT):I-cxp(-xAT)ﬂ-% (1.121)

R

Since the stochastic process is considered stationary, the theoretical probability Pr(k#0)
is not time dependent. Thcreforc, the uncertainty of the estimate F (AT) can be reduced
by averaging its value multiple intervals of size AT

F* (AT = 1 i [] _ Nolt,=iaT,e, =(i+1)AT)] -

Yar i=0 N

Here Ni=o(fs,t.) 1s the number of records that did not have any upcrossings from  till #.;
Nar1s a number of wholc intervals AT contained a record Icngth 7:
TS

G7.=E (1.]23)

Formula (1.120) is an estimate for the cumulative distribution function for one value of
AT. To calculate the rest of the estimated functions, all the calculations have to be
repeated for an array of points 7;

iT.}= AT, 2AT, 3AT,.., jAT,., T, (1.124)

Finally, thc estimate of the CDF at points 7;can be exprcssed as:

T,

B ]
L o
g AT |- Moty =GATL = G+DJAT)) . (1125)
Ty % Ny

To check the goodness-of-fit of the exponential CDF, Belenky er al., 2007 used the
Kolmogorov-Smimov test (also known as the K-S test) for goodncss-of-fit.. The
description of the K-S test approach, taken from Belenky e al., 2007, is provided below
for convenience. The metric for the goodness-of-fit is derived from the absolute value of
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the maximum difference between the suggested and statistical CDF.

D=max‘Fl."—F(1/)] (1.126)
The criterion itself is expressed though the maximum diffcrence D:
v=D-n (1.127)

Herc, n i1s the number of data points. It is proven that if the statistical estimate of
cumulative distribution function is evaluated for independent data, for any distribution
F(x), with increasing number of points:
X

lim(v>4)=1- Z(-—I)‘ cxp(—Zkzv:) (1.128)

e T
In practice. an upper bound of 10" (instcad of infinity) for the summation yields
satisfactory results. Formula (1.126) yields the probability that the difference between
the observed and suggested distributions 1s caused by random reasons, it » i1s large
cnough.

IS Z(—l)“ exp(-24°v?) (1.129)
k=—ox

It should be noted, however, that the K-S test does not account for the number of
statistical “degrees of freedom™, and it is only sensitive to a sample size. This implies that
the theoretical distribution must be suggested on the theoretical background only and that
it should not contain any parametcrs derived from the statistical samplc.

Belenky e al., 2007 uscd the K-S test to check if upcrossings follows Poisson
flow. However that source does not contain any information on how to set step A7. Here
it is associated with the bin width for time intervals between the upcrossings:

_33e,
3 ‘IVI

AT

(1.130)

Here o7 1s the standard deviation of the intervals between the upcrossing and Ny is thenr
quantity.

Figure 1.31 shows the statistical CDF calculated with formula (1.123) along with
the theoretical curve. The CDF for two levels of crossing are shown here, 7.5 m and
6.75 m. Other statistics and data for thesc levels are shown in Figure 1.3-Figure 1.5,
Figure 1.21, Figure 1.22 and Figure 1.24 and Figure 1.25 respectively. The K-S test did
not reject the hypothesis of an exponential distribution. The statistical CDF did not reach
unity for the level 7.5 m, as therc were four records without upcrossings at all. However,
for the level of 6.75 m, all the records had at least one uperossing, so the statistical CDF
did reach unity.
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Figure 1.31. Cumulative Distributions of Time Between Upcrossings for Levels of 7.5 m and 6.75 m

The outcomc of the test for both levels 7.5 m and 6.75 m is not surprising. All
analysis carried out before have indicated that the exponential distribution was, 1n fact,
applicable. As it can be scen from the nsert in Figure 1.21, the lower boundary of the
mean value is around 340 s, which is cnough time for the autocorrelation function to die
out (see Figure 1.11). The overlap between confidcnce intcrvals of the mean value
cstimate and standard deviation is significant (Sce insert in Figure 1.21).

The hypothesis that time intervals between the upcrossings have exponcntial
distribution was not rejected with the Pearson chi-square test (probability 0.77, see Figure
1.21). This hypothesis was also not rcjected by the K-S test, see Figure 1.31. The
difference between these tests i1s that the Pearson chi-square test was applied to the
sample of time intcrvals between the upcrossing. The Pearson chi-square test has shown
that the exponential distribution with theoretical paramctcr docs not fit that data
(probability is only 0.0024, see Figure 1.21). The K-S test in Figure 1.21 has shown that
the theorctical distribution fits the observed data (probability is 0.13).

The reason for this difference was actually already explaincd in thc previous
section. [t is a statistical bias of the sample of timc intervals between upcrossing. This
bias is introduced by absence of longer-than-record intervals. This bias decreases the
mean value of the time between the upcrossing and drives the statistical cstimate of the
distribution parameter (rate of events) up, sce Figure 1.22. As can be seen from this
figure, the bias is absent in the parameter calculatcd through averaging of the number of
upcrossing per unit of time. The bias also can be corrected by censoring the cstimate of
the mean time bcfore thc first upcrossing. Thcereforc, rcjection of the theoretical
distribution in Figure 1.21 does not constitute rejection of the hypothesis of exponential
distnibution and Poisson flow as it is the result of the statistical bias.

This bias is absent in the distribution (1.122) as 1t is essentially based on counting
upcrossings rather than on calculating the time interval betwecn thcm. The absence of
the bias gives the CDF (1.122) an advantage over a histogram of time intervals between
the cvents. Use of the CDF, however, requires using the K-S test, which has known
limitations. Strictly speaking, the K-S test is fully applicable only if parameters of the
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fitted curve are known a priori and do not come from statistical estimates. As mentioned
above the K-S test does not have any mechanism to penalize the result for using
statistically estimated parameters. [f these parameters have been used, the K-S test may
overestimate the probability that the difference between observed data and the fitted
curve caused by a random reason. Using the K-S test in this example is justified. as the
true value of the parameter is known. Using the K-S test for the real numerical
simulation or experimental results where all the parameters are statistical estimates,
therefore, 1s not desirable but may be unavoidable.

The results for the second dataset (the left eurve in Figure 1.31), corresponding to
the level of 6.75 m, are completely analogous. The analysis of the time intervals between
the erossing shown in Figure 1.24 as well as the insert in Figure 1.24 points out that
Poisson flow is applicable. The only difference is that all the records have at least one
upcrossing, so the statistical CDF reaches unity in Figure 1.31 and uncensored and
censored estimates coineide in Figure 1.25.

Figure 1.32 shows results for crossing levels of 9 m and Il m. Only 153
upcrossings occurred for the level of 9 m and only 111 records (out of 200) had at least
one uperossing. The bias of time interval between the crossings was so large that none of
the curves fit the data in Figure 1.23. Also, probably for the same reason, there was no
overlap between the confidence intervals of the estimates of mean value and standard
deviation in the insert on Figure 1.23. As it was noted before, this outeome can only be
explained by the influence of bias, as there i1s no reason why the exponential distribution
should not be applicable when the level is raised and uperossings beeome less frequent.
This statement is supported by ecomparison of Figure 1.15 and Figure 1.16, where time
before the first erossing i1s analyzed. None of the curves fit the data in Figure 1.15.
Figure 1.16 shows agreement with the censored data for curves based on theoretical
parameters as well as based on two statistical estimates. The left eurve in Figure 1.32
shows agreement with the data and no censoring is needed. This confirms the bias
explanation for Figure 1.15.
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Figure 1.32. Cumulative Distributions of Time Between Upcrossings for Levels of 11 m and 9 m
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For the level of I Im, only 10 upcrossings were observed. This is not enough data
for a meaningful histogram of time intervals before the first upcrossing nor for time
between the upcrossings. However, the methods based on counting number of
upcrossings still work. Figure 1.7 shows the estimate of upcrossing rate based on average
number of upcrossing per unit of time, while the right curve in Figure 1.32 shows CDF
for time between/before the upcrossing. It has very few points, but this was enough for

the K-S test to be used. The hypothesis of an exponential distribution was not rejected by
the K-S test.

Figure 1.33 shows the statistical CDF for the levels 5.75 m and 5.0 m. The
hypothesis of an exponential distribution 1s not rejected by the K-S test in either case.
Analysis of the distribution of the time intervals between the upcrossings delivered mixed
results. Figure 1.26 shows how results of the Pearson chi-square test becomc sensitive to
a small change of the bin width for the level of' 5.75 m. To reach a similar result for the 5
m level the “adjustments™ need to be much larger, see Figure 1.27. At the same time all
other symptoms of exponential distributions arc present: substantial overlap of
confidence intervals of the mean value and standard deviations estimates in the insert of
both Figure 1.26 and Figure 1.27. Additionally, the distribution of time before the first
crossing remains exponential for a level of 5 m, see Figure 1.13 and Figure 1.14.

The conclusion made in the previous section was that the exponential distribution
was rejected (upper parts of Figure 1.26 and Figure 1.27) because of the values in the
first bin. This is a reflection of increased cases of upcrossings occurring on successive
periods; essentially, it is an influence of the group structure of the stochastic process. As
it was cxpccted in the prcvious subsection, the local distortion of the histogram did not
Icad to rejection of the exponential distribution based on analysis of the statistical CDF.
Howecver, it is clear that both levels 5.75 m and 5.0 m are not very far from the boundary
of applicability of the exponential distribution and Poisson flow.

T 00000000000
CDF 00
90
o
08T ¢ @ \

Level of crossing 5 m = OO 2 Level of crossing 5.75 m
5407 crossings total P 3269 crossings total
All records with at feast 06T 7' 4 All records with at Icast
onc crossing @ one crossing
D=0.0141 0.4l ¢ D=0.0136
v=1.039 of v=0.7754
PR.VI): -0.23 f PR.\'I) 0.585
Hypothesis passed 0.219 Hypothesis passed

' 1.8

0 200 400 600 800

Figure 1.33. Cumulative Distributions of Time Between Upcrossings for Levels of 5.75 m and 5 m
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To examine when and how the breaking of Poisson flow can be detected by the
K-S test, upcrossings through levels of 4.75 m and 3 m wecre analyzed (see Figure 1.34).
For the 3 m level, Poisson flow is clearly inapplicable, as it can be seen from the Figure
1.28: the histogram of the intervals between the upcrossing no longcer has the appearance
of an exponential distribution and the confidence intervals in the insert do not overlap.

The results of the K-S test shown in Figure 1.34 clcarly reject the hypothesis of
an exponential distribution. The shape of the statistical CDF is different from that of an
exponential curve. This seems to be a natural outcome of the non-exponential character
of PDF in Figure 1.28. This also demonstrates the robustness of the considered
technique; combination of CDF (1.122) and K-S test has spotted inapplicability of
Poisson flow as well as all other methods with exception of analysis of the time before
the first crossing (Figure 1.18).
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Figure 1.34. Cumufative Distributions of Time Between Upcrossings for Levels of $.75 m and 3 m

Another important result shown in Figure 1.34 1s a rejection of the exponential
distribution for the level of 4.75 m. The rejection means that, according to K-S test, the
boundary of applicability of the exponential distribution is somewhere between the levels
of' 5 m and 4.75 m. This is in agreement with the previous conclusion that the levels 5.0
to 5.75 m are not very far from that boundary; so the sensitivity of Pcarson chi-square test
to the bin width may be giving a hint that the boundary of applicability is somewhere
near.

1.3.5. Direct Test of Applicability of Poisson Flow

The CDF formula (1.122) in combination with a K-S test seems to be a robust
technique for checking the applicability of the exponential distribution and Poisson flow.
However, if the paramcter of the distribution is a statistical estimate, the K-S test may
overestimate the probability that the difference between the observed data and fitted
curve is caused by random reasons. The Pearson chi-square test allows a penalty to be
introduced for the statistical estimate by reducing the degrees of freedom by one, and is
therefore preferable.

49




The applicability of Poisson flow ean be judged direetly by ecaleulating a
histogram of the random number of upcrossings observed during a given time and then
cheeking if the Poisson distribution fits the observed data. The goodness-of-fit then ean
be judged with the Pearson chi-square test.

Formula (1.30) gives the expression for the Poisson distribution in the form of the
probability mass funetion (PMF), as the number of upcrossing is an integer figure:

3
Pr(k)=%-exp(—kﬂ) (1.131)

Here A is the rate of events that is estimated statistieally, but is also known
theoretieally for the eonsidered example, 4 is the number of uperossings observed during
time Ty .

To formulate the procedure, time 7; needs to be chosen. The record length scems
to be the natural choice; however, this limits the size of the sample to the number of
records. This sample size may be not suffieient even for the considered numerieal
example with 200 reeords. If this technique is to be applied for a model test, then a
smaller window has to be introdueed, as there may be few reeords.

Consider a size of sample N that is the total number of time windows.
nN At
N, = T
/4

Here Ng is s number of records. # 1s a number of points in each record. At is the time
step. The duration of time window ean be conveniently presented as a fraetion of the
duration of the record, or as the number of windows per record.

nAt
Np=—= (1.133)

T,
Onc of the properties of Poisson distribution is the mean value numerieally equals the
variance:

W, =4, =M (1.134)
Table | and Table 2 eontain the ratio of estimates of mean value and varianee. The mean
value and varianee of the Poisson distribution ean be statistically estimated.

(1.1.32)

.1 & . 1 & s
m; =TZ/{,. A - lZ(k,. —my )’ (1.135)
Ny i=l e s izl

Here k; 1s a number of upcrossings that was observed in the window 7. It can be shown
that:

i, =, (1.136)
Where " is an estimate of ratc of events based on “counting” — the average number of
uperossings per unit of time (1.46). For the proof, consider an auxiliary random variable
U defined at each time step that equals one if there is an uperossing and zero if there is

not (1.38). Without a loss of generality, the definition of this auxiliary variable ean be
altered by the introduction of counting of time windows:
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Where Np is a number of points in a window:
(1.138)

Based on this definition, the number of upecrossings in a window can be expressed as:

Ny
=ZL', . (1.139)

1=l

Then. the estimate of the mean value of the number of upcrossings during the time
windows yiclds:

’”k == S

i
‘Vk i= u N

X\ZA =N \i\“ \ZL, (1.140)

R oi=1 =1 u‘R/IJIIl

Taking into account that the two internal sums represent the number of uperossings
observed during one record:

N, = ZZU,_,_, (1.141)

Substitution of (1.139) into (1.138) and then using formula (1.45)

v .
, E m
m, = N, =—% (1.142)
' NN, Z,: v, |

Here i, is a mean value estimate of the auxiliary random variable U. It is related to the

estimate of the rate of events with formula (1.46). Substitution of (1.46) into (1.139)
yields:
4 8,
mlzlf-:—,—k (1.143)
N Ny
Here 7% 1s the duration of a record;
T, = nAt (1.144)

Substituting (1.142) into (1.141) and taking into aceount (1.129) leads to the expression
(1.130) and this completes the proof.

While numerical proximity of estimates of the mean value and variance may be
used as a qualitative indicator of possiblc applicability of Poisson flow, a chi—squam
goodness-of-fit test provides a more rigorous technique. As an example, Figure 1.3
shows details of these results for the level 6.75 m.
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04T ©66 Theoretical mass probability function ¥°=3.79 d=6 P(y°.d)= 0.704

©6© Basced on Average Number per Unit of Time ¥°=2.81 d=5 P(x:.d)‘— 0.728

©©6 Based on Average Time between Crossings ¥°=30.21 d=5 P(y*.d)=0.000134
660 Based on Average Censored Time before 1st Crossing %’=6.69 d=5 Py’ .dy=0.245

Crossing level 6.75 m

Total 1421, all 200 records had crossings
Number of time windows per record N, =5
Duration of time window 7;=360 s
Volume of sample 1000

Estimate of mean value m, =1.421
Estimate of variance l".'rl.35I

Ratio m, "/ V,"=1.052

0 1

o T

Figure 1.35. Probability Mass Function of the Number of Upcrossings During a Time Window

As in the previous analysis, five different mcthods were used to evaluate the
single paramcter of Poisson distribution. The results of a Pearson chi-square goodness-
of-fit tcst for all five methods are presented in Figure 1.35. This test did not reject the
hypothesis for the theoretical distribution, demonstrating correct interpretation of the
theory and a reasonable choice of parameters. This is consistent with the result in shown
Figure 1.31.

The distribution defined using the parameter estimated as the averagc number of
upcrossings per unit of time was not rejecting either, confirming the robustncss and
reliability of the “‘counting” method. This is consistent with the results shown in Figure
1.25, where the “counting” method produced the number closest to the correct answer
known from theory.

The chi-squarcd goodness-of-fit test rejected the distribution based on average
time between crossings, most likely because of insufficient record length. This effect can
be seen in both Figure 1.24 and Figure 1.25.

As all the records had at least one crossing, the methods based on uncensored and
censored mean time before the first upcrossing produced identical results and were not

rejected. These results are generally consistent with the previous analysis, see Figure
1:25.

To complete the formulation of the proccdure, the size of thc time window 7 has
to be chosen. As the number of upcrossings is an integer, the width of the histogram bin
is one and the numbcr of bins, Nnay, is defined by a maximum numbcr of upcrossings
observed during a time window.

Obviously, Nnay 1s expected to be larger for larger values of 7;. Therefore, taking
into account (1.129), Ny 1s expected to be larger for smaller sample size N;. Naturally,
the constant duration of the time window for different levels of crossings makcs a very
obscure histogram as the decrease of sample size leads to a large number of bins.

Therefore, it makes sense to keep Ny rclatively constant by adjusting the
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duration of time window. This leads to an increase of hits in each bin, once the sample
size grows, which seems more natural. The number of windows per record can be chosen
to satisfy a condition for a constant number of bins, say:

Ny =T (1.145)

If condition (1.143) could not be met, cspecialtly for a small number of crossings.
the number of windows yielding Ny closest to 7 is chosen. If there are several window
sizes that satisfy (1.143), the largest one is chosen. Deviations from this rule should be

especially noted and commented.

It is known that results of Pearson chi-square goodness-of-fit-test may be
sensitive to the number of bins. For analysis of time intervals before and between the
upcrossings, the formula for the width of a bin (1.110) was used. The condition (1.143)
used to size the histogram is somewhat arbitrary; therefore a sensitivity study was carried
out. The level 1s 6.75 m. This crossing level was chosen because there are enough
upcrossings (1421) and the tests carried out previously did not reject the hypothesis of
Poisson flow. The windows size was changed systematically and the results are
summarized in Table 1.

Table 1. Sensitivity to Time Window Size for the Crossing level of 6.75 m
Results Pearson chi-square goodness-of-fit test for distribution based on:

- - o Theory Counting Time between Time before the
o 2| E| E» |2 crossings 1¥ crossing
% M| = x| £ 3 3 3 3 3 7 3 3
2 ¥ Piy'.d) |« Py |y Piy.d) | x POy .d) |
1 1800] 14 200 1.76 | 23.98 0.0313 |24.14 | 0.0195 4244 |2.81E-5 |25.53 | 00125
2 900 | 10 400 1.26 | 16.81 00518 [16.33 | 0.0378 [39.15 |4.61E-6 |19.05 | 00146
3 600 | 8 600 111 | 688 0.441 6.83 0336 |29.84 |4.21E-5 | 900 | 01737

4 |a450] 7 [800 [ 105 181 0936 | 1.06 | 0957 [27.34 | 49E-5 [ 451 | 0478

5 360 7 [1000 | 1.05| 38 0.704 |2.82 | 0.728 [30.21 |1.34E-5 | 6.69 | 0.245
6 [300]6 [1200 |1.03] 348 | 0627 [268 | 0613 [2946 |631E-6 | 626 | 0.I81
7 |257|6 [1400 [1.03 ] 132 0.933 | 020 | 0995 |284 [1.04E-5 | 436 | 0360
8 |225]6 [1600 [ 101 | 546 | 0363 | 444 | 0349 [32.79 |1.32E-6 | 847 | 0.0759
9 12006 [1800 [1.02] 202 | 0847 [0.71 | 0950 [29.91 [511E-6 | 522 | 02606

10 180 | S 2000 | 0.99 | 3.26 0.515 23 053103 30.59 | 1.04E-6 | 6.25 0.100

11 [1e3s] 6 [2200 [1.00 [ 2.74 0.741 1.44 | 0.838 [30.92 |3.18E-6 | 5.96 | 0202

12 150 | § 2400 | 097 | 6.74 0.150 6.04 0.110 3381 |2.17E-7 | 9.59 00224 |

13 [1385[ 5 2600 | 1.00 | 609 | 0.192 |500 | 0.172 [33.74 [225E-7 | 918 | 0.027
14 12855 2800 [ 097 | 6.84 0.145 | 563 | 0.131 |35.47 |9.68E-8 [10.07 | 0.018 |
15 [120] 5 [3000 | 099 | 5.81 0214 | 476 | 0.190 |33.58 |2.43E-7 | 889 | 00308

20 |90 5 [4000 [097] 6.12 0.191 | 481 | 0186 3491 [127E-7 | 941 | 00243

25 | 725 |5000 | 095 | 993 |00416 | 878 | 00324 |3876 |195E-8 |13.17 |4.201.-3 |
30 | 60 | 4 | 6000 [0.97 | 518 | 0159 | 407 | 0131 |3327 |597C-8 | 832 | 00156 |
30 |45 [ 4 |8000 [098 | 892 [0.0304 |7.87 |0.019 [3673 [1.06E-8 [12.01 |247E-3 |
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I 50 I 36 | 4 ||0000 |0.98 | 428 | 0.233 |2.92 | 0.232 |32.99 |6.85E-8 |7.60 |0.0223 |

The results of testing four distributions are placed into Table 1. All the records
did have at least one uperossing, so there is no difference between censored and
uncensored data for the mean time before the first upcrossing.

The hypothesis of a Poisson distribution was not rejected for the theoretical
parameter for a continuous range from 2 to 15 widows per record. There were only three
window sizes for which the probability of a good fit was less than the significance level
of 5% (1, 25 and 40 windows pcr record). However, cven for these cases, the probability
did not go below 3%. The theoretieal eriterion for any goodness-of-fit test is just a
tinitcness of the probability that the difference between the observed data and hypothesis
1s eaused by random rcasons. Therefore, variation of thcse probabilities from 93% to 3%
does not nccessarily constitute sensitivity. It does not change the outcome that the
hypothesis is not rejected. Therefore, the sensitivity to windows size is very small when
using a theorctical parameter.

A similar eonclusion ean be made on the distributions based on eounting and time
between upcrossings. The outcome of goodness-of-fit analysis does not change
significantly with ehanging window size.

The situation is less stable for the distribution based on time before the first
upcrossing. The instability can be explained by the fact that this estimate uses less
statistical information then the others, which 1s reflccted in wider confidence intervals,
sce Figure 1.25.

Once nsensitivity to window sizc has been demonstrated, the next objective 1s to
see how this method behaves when the assumption of Poisson flow is no longer
appheable.

Table 2 contains results of systematic calculations for different crossing
thresholds. Thc table includes results of a chi-squarc test eomputed five different ways:
theoretieal (1.81), statistieal, bascd on counting uperossings (1.46), statistical, based on
mean time between upcrossings (1.96), statistical, based uncensored mean time before the
first uperossing (1.100) and statistical, based on censored mean time before thc first
upcrossing (1.103).

Results for both the theoretical distribution and the distribution based on eounting
indicatc the applieability of Poisson flow above the level of 6 m. Levels 5.75 mand 5.5 m
show some sensitivity to windows size (see Table 3 for the level 5.75 m). The area of
scnsitivity to window size generally corresponds to the area of scnsitivity to bin size, see
Figure 1.26 and Figure 1.27. It seems plausible that sueh “grcy” areas are indicators that
the independence of upcrossings is about to be violated and Poisson flow will bceome
inapplicable soon (or is inappliecable already). The inapplicability of Poisson flow is
indicated consistently for all the levels below 5.5 m. The boundary between applicability
and inapplieability determined by this method 1s a little higher than one evaluated using
the K-S test (bctween 5 m and 4.75 m).

The distribution based on time between upcrossings was rejected for all the levels.
The sample of time intervals bctween the crossings did not produce representative
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statistical estimates for the accepted calculation paramcters (number and length of record.
time step, etc.). As it can be scen form Figure 1.9, Figure 1.22, and Figure 1.25, the
length of the record was too small to estimate the rate of events corrcetly for the levels of
9 m, 7.5 m and 6.75 m, respectively. As a result, a Poisson distribution based on this
estimatc was rejected. The length of records seems to be barely enough for the level of S
m, see Figure 1.8, but this level was too low to assure independence of upcrossing. and as
a result Poisson flow was not applicablc and thc distribution was rcjccted again.

Table 2. Evaluation of applicability of Poisson flow

Mean time estimatc CDF & K-S Test Direct test of applicability of Poisson flow

fome 3
c . 3 = Ppy ears i-s sty P
£ E Bl ] o § sl RND Pearson chi-squarc test ™ Py
= | 25| 85| gE| 58 S| £4 L T 7 5 bl
3} gz zz| 53| 2388 = 8| S« s ;lhkﬂl’_\« count  [Time  [Time  fcensored
5 =S 52| SE| 5< 8 B2 2c «F }3 B between pefore  Jume
— 7 O ol mo| OB g 5] »no < = ¥4 bt
720 <) clore
11 10 849 | 849 | 35000 | 362 | 589 | 1 1 1.05 | 2 | 0.097 | - - - -
0.76
10 58 894 | 925 | 5918 | 482 | 435 | 0.98 1 113 |3 | 546 |08 587 535 0.7

0.065 0:37 0 0 0.4

9 152 726 | 801 | 2244 | 389 | 320 | 0.996 | 1 1.08 | 5 1234 (226|409 [299 | 231
067 (05210 0 0.51

8 425 502 | 582 | 750 414 | 193 | 0.54 1 137 |57 | 723 1123 1241 LSS 10
0.3 02 10 911 1 0.07

75 721 367 | 414 | 451 340 | 133 10735 | 2 1.08 | 8 [ 256 | 2.24 | 70 256 | 8.78
092 | 0.89 | 313 | 0002 | 0.18

7 1140 | 263 | 292 | 292 254 | 85 078 | 4 1,05 |7 | k65 [10:724["35 6.78 | 6.78
0.95 | 0.98 | 12¢6 ] 0.23 | 0.23

6.75 | 1421 | 219 | 239 | 239 210 | 65 0383 5] 1.05 | 7 | 3.8 2.82 | 30.2 | 6.69 | 6.69
0.7 0.73 [ 1351 0.25 | 0.25

6.5 1780 1179 | 186 | 186 173 | 50 019 |9 1.02 | 7 | 4.0 344 | 283 [ 153 | 153
0.67 ] 0.63 | 32¢-5 | 009 | .009

6.25 | 2195 | 149 | 154 | 154 145 | 39 027 |11 | .997 |7 | 484 |456 |226 | 126 | 12.6
0.56 | 0.47 | 40e4 | 027 | .027

6 2684 | 124 | 121 121 121 | 31 048 13 1104 ™7 1158857 342 | 173 [ 282 | 282
0.73 0.63 | 0043 | 3.e4 | 3.ed

5.75 | 3269 | 103 | 100 | 100 101 | 24 058 |13* | 1.08 |7 984 | 988 | 19.8 | 33.8 | 33.8
0.13 [ 0.08 [ .001 | 276 | 2.7e-6

55 | 2840 | 89 86 86 97 195|064 [15* | 107 [ 7 [ 1025 ] 947 [ 173 | 346 | 346

0.11 0.09 | 0036 | 1.8¢-6 | 18e-6
5.25 | 4597 | 75 71 71 73 15.3 | 0.82 19 L0 (7 10328 33 36.5 | 60.8 | 60.8
1.0e-5 3.e-5 7.5e-6 | Re-12 | Re-12
) 5407 | 64 60 60 6l 1221 0.23 21 77 |72 73 73 101 101
1.3e-8 2e-14 | 2e-14 0 0
475 | 6393 | 547 | 53 53 50 9.5 100015 |1 22 | 1.22 |17 | 88 88 88 99 99
0 0 0 0 0
3 15201 23.5 | 472 | 1E7E 154217 (0 32 1227 | 7 | 1437 |1446 1435 | 2340 | 2340
0 0 0 0 0
1 22543 140 | 7751 7.75 422105 0 39 1671 | 7 | 6996 [6998 | 6991 31693 21693
0 0 0 0

* N, was manually chosen to sec if the hypothesis can pass. Possible sensitivity to number of windows

The distribution bascd on uncensored time before the first upcrossing was not
rejected for the level of 7 m and 6.75 m. It was rejected for the levels of 6.5 m and 6 m.
probably becausc of insufficient accuracy of the estimate. For the level of 5.75 m and
below, Poisson flow may bc alrcady inapplicable. For the levels above of 7 m the
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hypothesis was rejected, because of bias in the estimate caused by msufficient length of
record, see Figure 1.9 and Figure 1.22.

The distribution based on censored mean time before the first upcrossing,
however, is not rejected up to the level of 10 m. This is not surprising as the censoring
procedure takes care of bias in the parameter estimate, see Figure 1.8 and Figure 1.22.
The rejection of the level below 6 m is caused by the same reasons as the rejection of the
distribution based on the uncensored estimate.

Table 3. Sensitivity to Time Window Size for the Crossing level 5.75 m

P Results Pearson chi-square goodness-of-fit test for distribution based on

2 - g ‘_;;' >::< .:E" Theory Counting Tircnrngscinm;cn Tirl'rzlccli(c)?;irﬁéhc

T B IO " P | 1 P | P | L P d)
] 1800( 27 | 200 | 229 [ 55.07 [7.44E-04 [55.08 [4.81E-04 |64.55 [2.40E-05 |77.61 [2.69E-07
2 900 | 16 400 1.43 | 22.45 [9.65E-02 |22.48 [6.93E-02 |31.01 [5.50E-03 |43.29 |7.70E-05
8 600 | 14 600 1.34 | 25.1 2.24E-02 |25.14 (1.42E-02 |33.25 [8.86E-04 |45.51 [8.43E-06
4 450 | 11 800 1.13 | 974 [4.63E-01 | 98 [3.67E-01 |17.99 [4.00E-02 | 30.9 (3.08E-04
5 360 | 11 1000 1.14 | 16.82 [7.86E-02 |16.84 [5.13E-02 |26.74 (1.54E-03 |40.39 [6.45E-06
6 300 (10 | 1200 | 1.15 | 21.05 |1.24E-02 |21.08 |[6.93L-03 [30.41 |1.79E-04 |43.75 [6.33E-07
7 257 | 11 1400 1.07 | 12.54 |2.50E-01 [ 12.6 1.81E-01 |21.56 [1.00E-02 |35.45 [4.96E-05
8 225( 9 1600 1.06 5.1 747E-01 | 5.11 [6.46E-01 |16.16 [2.00E-02 |30.79 [6.78E-05
9 200} 9 1800 1.11 [ 11.61 [1.70E-01 [11.64 (1.13E-01 [21.31 (3.34E-03 [35.07 [1.09E-05
10 180 | 8 2000 1.07 | 6.65 [4.66E-01 [ 6.68 [3.52E-01 [0.3519 (8.31E-03 [31.66 [1.90E-05
11 163.5| 7 2200 1.05 [ 505 [5.38E-01 | 5.09 [4.05E-01 |14.67 [1.00E-02 |28.62 [2.75E-05
12 150 | 8 2400 1.06 | 11.05 |1.36E-01 |11.09 [8.57E-02 [20.98 [1.85E-03 |35.08 |4.16E-06
13 [138.5] 7 2600 1.08 [ 9.85 1.31E-01 | 9.88 [7.87E-02 | 19.8 [1.36E-03 [33.76 [2.65E-06
14 [128.5] 8 2800 1.06 | 11.18 [1.31E-01 [11.23 |8.16E-02 [20.84 |1.96E-03 |34.84 [4.64E-06
15 120 | 6 3000 1.05 | 5.78 |3.29E-01 | 5.82 |2.13E-01 |15.53 |3.72E-03 |29.53 |6.09E-06
16 [112:5] 7 3200 1.03 | 5.32  |5.03E-01 | 5.34 |[3.76E-01 [16.76 |4.98E-03 [31.74 [6.69E-06
17 106 | 7 3400 1.06 | 13.81 (3.18E-02 [13.83 [1.67E-02 [24.57 (1.69E-04 [39.08 [2.29L-07
18 100 | 6 3600 1.03 | 17.93 [3.04E-03 |17.97 [l.25E-03 |27.86 |1.33E-05 |42.17 |1.54E-08
19 94.5| 7 3800 1.05 | 1952 |3.36LE-03 |19.58 |1.50E-03 [28.63 |2.74E-05 [42.44 |4.79E-08
20 9 | 6 4000 1.01 [ 745 1.89E-01 | 7.47 |1.13E-01 [18.65 [9.21E-04 |33.65 [8.78E-07
21 855] 6 |4200 1.06 | 24.55 |[1.70E-04 |24.62 |6.01E-05 |32.96 [1.22E-06 |46.31 (2.13E-09
22 8216 4400 1.03 | 21.9 |546E-04 [21.93 |2.07E-04 [32.84 |1.29E-06 [47.69 |1.09E-09
23 7851 6 4600 1.03 | 692 |2.27E-01 | 692 |1.40E-01 |18.98 |7.94E-04 |34.32 [6.40E-07
24 7516 4800 1.05 | 12.58 [2.77E-02 |12.6] [1.33L-02 |22.73 |(1.43E-04 |36.96 |[1.83E-07
25 72 | 6 5000 1.02 | 13.59 |1.85E-02 | 13.6] |8.63E-03 |24.3]1 |6.91E-05 |39.05 [6.79E-08
30 60 | 5 6000 1.03 | 8.71 |6.87E-02 | 8.75 |[3.28E-02 [18.69 |[3.17E-04 | 32.9 (3.37E-07
40 45 | 4 8000 1.04 | 3.79 [2.85E-01 | 3.85 |[1.46E-01 |12.47 [1.96E-03 | 259 (2.38L-06
50 36 | 4 |10000 | 1.04 | 17.53 |5.51E-04 | 17.6 |1.51E-04 |25.51 |2.89E-06 |38.66 [4.03E-09
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1.4. Summary

The probability of a large roll event (partial stability failure) is related to exposure
time. This probability grows with time. The time before a large roll event 1s a random
number.

If sequential large roll events can be considered independent, the number of such
events during a given time follows a Poisson distribution and the time before a large roll
event (or between them) has an exponential distribution.

Both Poisson and exponential distributions share a single parameter that
completely defines both distributions. This parametcr is the rate of events (average
number of events per unit of time) and is equal to the inverse the mean time before or
betwecen the events.

If the distributions of instantaneous roll angle and roll rate, arc known. the rate of
events can be found using upcrossing theory.

Large-amplitude roll motion is the response of a dynamical system with
significant nonlinearity. Even if the excitation of such a system has a normal distribution,
the response can be significantly non-Gaussian. As reliable modeling of the distribution
of roll angle may be difficult, statistical evaluation of the rate of cvents is of practical
interest.

Three methods of statistical evaluation of the ratc ot events were considered. The
first method is based on counting the upcrossing events and estimating an average
number of events per unit of time. The sccond method was based on average time before
the first event occurs, while the third mcthod involved time estimation of average time
between events.  Evaluation of the confidence interval was included with all three
methods.

A numerical example was formulated to cxamine how these methods work.
Simulated wave elevations were chosen to serve as the data set for this example. Their
distribution is known to be normal. Therefore, the theoretical value for the rate of events
or upcrossing rate is available. Thcse methods can therefore be judged based on how
close the results come to the thcoretical answcr.

A different degree of rarity of the upcrossing cvents was modeled by varying the
crossing level; high crossing lcvel leads to fewer upcrossings, so the events become rarer
and the mcthods can be tested for different conditions.

It was found that the methods based on time before and between the events may
be biased due to insufficient record length. The method based on counting does not have

this problem. This bias for the method based on average time betore the first upcrossing
can be corrected by censoring.

The counting method was found to be prcferable as it not biased and has less
statistical uncertainty in comparison with the method based on censored mean value of
time before the first event.

Several methods werc considered for checking if upcrossing cvents follow
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Poisson flow and, therefore, if the exponential distribution can be used to compute
probability of at least onc event during given exposure time. All of these methods used a
goodness-of-fit test to check if the distnibution of the obscrved data follows either an
cxponcntial or Poisson distributions. These methods were:

1. Check if statistical PDF of time before the first event is exponential using Pearson
chi-square goodness-of-fit test;

P

Check if statistical PDF of time between the events is cxponential using Pearson
chi-square goodness-of-fit test;

3. Check if statistical CDF of timc between thc events is exponential using
Kolmogorov-Smirnov goodness-of-fit test;

4. Check if statistical probability mass function (PMF) of numbecr of events during
given time follows Poisson distribution.

The numerical example was also used to test all thcse methods. The theoretical
distribution available for the numerical examplc was used to chcck if the calculation
parameters (number and length of record, time step, etc.) were selected correctly so the
results can be decisive.

The methods 2, 3 and 4 were found to be ablc corrcctly detect violation of Poisson
flow caused by dependence of the upcrossing cvents. However, method 2 uses a biascd
distribution and method 3 may overestimate thc goodness-of-fit if the statistical estimates
were uscd for parameters of the distribution. Method 4 is therefore preferable.

In conclusion, two techniques arc choscn for the procedurec:

e The rate of events is to be estimated as an average number of upcrossings pcr unit
of time — the “counting” mcthod

e The applicability of Poisson flow is to be checked using a Pcarson chi-square
goodness-of-fit test applicd to the statistical PMF of the number of upcrossings
during a given time.
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2. Extreme Value Theory
2.1.Background

Gumbel (1958) formulated Extreme Value Theory (EVT) in its modern form. One
of the immediate applications of EVT was the prediction of extreme flooding based on
multi-year observations. There is a series of measurements of the water level in a river
observed during a year. Taking the largest measurement for each year a scries of extreme
values 1s created. The basic question posed was then, "What would be the level for a
one-hundred-year flood?”

Extreme value theory looks at another aspect of the problem of rare events. While
the Poisson distribution (considered in detail in the previous section) answers how many
rare events could occur in a given time period. EVT looks into the distribution of the
magnitude of the rare events.

The concept of order statistics 1s another mathematical tool that 1s related to
extreme value theory. Order statistics are reviewd briefly in the next subsection.

2.1.1. Distribution of Order Statistics

As order statistics can be applied to both roll angle and time before or between
large roll events, the following text uses the generic nomenclature X for observations of a
continuous random variable x. The following represents a generic derivation that could
be found in a number of statistical textbooks. Similar to derivations in the previous
section, it has been placed here for the sake of completeness.

Consider a series of n independent observations of a continuous random variable
A1 A, X, The largest (or the smallest) observation out of » 1s also the random variable
with a distribution that is different from the distribution of x.

The set of values X\, A%...., X, 1s sorted (ordered) from smallest to largest, so that
X1y 1s the smallest observed value while X, 1s the largest. The value X4, which is A-th
from the smallest, is defined as the A”-order statistic. The objective 1s to find the PDF ot
k-order statistic fx(x).

The PDF is, by definition, the derivative of the CDF:

df';l\ )('\‘)

(2.1
dx

./;A,(-\') =

The cumulative distribution function (CDF) of the &”-order statistic is defined as
the probability that the encountered value of the A"-order statistic is less than an
argument of this function.

EM('\‘) ~ P(th» S '\') 1E£2)
However, 1f

£,




! , y

K ieny) £ x}:> {/\m s "} (2.3)
Because values X, are sorted in aseending order (due to definition of order statistic), so

X‘k) < X(k+l) (24)

The eonverse 1s not true: if X{;<x it not neeessarily mean that it is also larger
than X4 1). The following expression is bieonditional, but it is for k =»n — | only

{X(”)SX}U{X“,_x<X(",} {X<n5"} ; k=n-1 (2.5)

Formula (2.5) ean be generalized for any value of &

A -\'}U[U{Am L < X(,m}] P <o} (2.6)

i=k

Formula (2.6) expresses all possible ways how the condition X;<x can be fulfilled.

The CDF of k-order statisties ean be expressed by substitution of (2.6) into (2.2)

(“(\') P(‘Y(k) < \) P({ (n) _AJU[U{X(,) sx< /\,(HI)}j] (27)

=k

Equation (2.7) is a probability of a union of random events where the
corresponding conditions are true. As it can be clearly seen from the equation (2.7) all the
conditions are incompatible and the probability of simultaneously oeeurring random
events is zero. As it 1s known, the probability of the union of incompatible events equals
just a sum of probabilities:

n-1

Fr () =Px,, <x)+ S P(x, <x<x,,) (2.8)

i=k

Consider the first eomponent P(X,,<x). It is a probability that the argument is
greater than the n-order statistie, whieh is the largest observed value. As there were n
observations total, the eondition P(X<x) has to be satisfied » times:

P(X,,, <x)=(P(X <x)) =(F(0) (2.9)

The component under the symbol of summation in expression (2.8) represents a
probability that x will exceed a value that has been seen in / observations, but is less than
any of the values encountered in n-i observations:
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PlX, <x<X,,)=Coni(PX <)) (PX > x)" (2.10)

Sl )

Here C(n, i) stands for a number of distinct variants where x could exceed values
that have been secn in i observations, but not exceed the rest n-i observations. It is a
number of combinations of how i values can be chosen out of n.

n!

Cln,jg) =
(%,7) tn-i)

@ 11)

It is not difficult to recognize that expression (2.10) is, in fact the binomial distribution:

Px,, <x<x,,)=Cli)pqg"

&t

(2.12)
p=PX L3y ; g=PX >x)=1-PX=2x)=]-p
By definition, it is the CDF of random variable x,
p=PX <x)=F(x) (2.133
Substitution of formulae (2.9), (2.12) and (2.13) into the expression (2.8) yields:
n—|
Fi, ()= (F) + D ConF ) - Fap™ (2.14)
juk
The first term in the expression (2.14) can be presented in the following form:
(F(x)) = Cn.n)(F(x))' (- F(x)) = Coni)F(x)) (1 - F(x))"’ B (2.15)

Then, it can be incorporated into the sum. This leads to the following expression for CDF
of k-order staustic:

Fiy(0) = Cn,iX(F(x)Y (1= F(x)"™ (2.16)
ik
Substitution of (2.16) into (2.1) leads to the PDF of k-order. Derivative of the sum.

; ’ 4 o / Hn-i
S0 === 3 Clnif(F(0)f (1= F(x))
” 1. - (2.17)
. Z‘T(_‘(n.i)(F(.v))'(l = Fy™

i X

Appling the product rule of differentiation:
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= 3 N—i d 5 ; j d n—i 5 8
i) = 3 Cmi A=F ey (P () Sa-reoy)) B
ik X dx
Considering each of the derivatives, using the chain rule of differentiation:
d 1 B PR
Fcoy)=itFey s
N (2.19)

d ; i1
L(1-F@Y )= -i)-(1-FY (- /()
dx

Substitution of (2.19) into (2.18) yields:

S = Y Coni(F 0 A= FEY = =DF@) - F@Y ) @220

Expand the formula (2.11) for a number of combinations C(n, i) and consider each

component of (2.20) separately:

C(n,Di(F(x)) " (- F(x)y" = i i(Fx) '(1-Fx)y ' =

if(n—i)!

_ ﬂ! AYile ni _
—(i—l)!(n—i)!(F(A)) (=Fa™ = (2.21)

_ (n=D)!n . iy i _
_(i—l)!((n—l)—(i—l))!(P(x)) (=51))

= Cn-1i-n(F(x)) '(1- F(x)""

Cnidn=iF®) (1= F) ' = —E—(n=i)(F(0)) 1= Fy
i'(n=i)!
B ! N niel _
= m(ﬁ (X)) A-Fx) ™ = (2.22)
(n—1!n

S ((n_1)_1.)!(F(x>)'(l—F(x»" e

C(n=1,iyn(F(x)) (1- F(x))" "

Substitution of (2.21) and (2.22) back into (2.20) yields:
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fi,(x)= nf(x)[iC(n— l,i—l)(F(.\'))' =™ =

1=k

(2.23)
= Cln—La)F ()= Fx)" !
i=k
Consider the first sum in the expression (2.23): its expansion looks like:
D Cln=Li=D(F(x)) (1= F(x)"' =
ik
=C(n—-Lk =D(F(x))* 'A=-F)"* +
+Cn—-1LEF) A-Fx)) '+ (2.24)
+Cln—-Lk+DF@0-FEp™" +
o+
+C(n-Ln-D(F(x))"'(1- F(x))°
Consider the first sum in the expression (2.24); its expansion looks hke:
D Cn-Li)F(x))(1- Fx)" "' =
i=k
+C(n=LEF) A-Fx)n™* '+
+Cln=1Lk+ DFE) (= Fla)™™ "+ (2.25)
+C(n=1k+2(FX)) (- Fx) ™ ' +
4o+

+C(n=1,nm){F(x))"(1- F(x))"

Note that the second term in the expanded sum (2.24) is identical to the first term
in the expanded sum (2.25), while the third term ot (2.24) is equal to the second term of
(2.25) and so forth. As the expression (2.23) 1s a difference between sum (2.24) and
(2.25), only the first term of (2.24) and the last term of (2.25) survive.

Fio () = nf T =1k =D(F(x)* A= Fx)'* -

(2.26)
—Cn=Ln)(F(x))"(1=F(x)) ")

Consider the second term in the equation (2.26), the cocfficient there expresses the
number
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Cn-1,n)=0 (2.27)

As a result the second term in (2.26) equals zero. Finally the PDF of the k-ordcr statistic
is:

n
v k-1 _ R nok
ooy [ )—(A—l)'(1—k)'( ()" (1= F(x) (2.28)

2.1.2. Extreme Value Distributions

In general, the distribution of cxtreme values is a particular case of distribution of

order statistics (Gumbel, 1958).

Consider a set of independent identically distributcd random values {x,..., x,} the
limiting cumulative distribution has been shown to be of the form: (Davison, 2003):

1

=01
P(\‘> Y(")) (:El (x)=exp _[1+YYT') (229)

Here 0 is a location parameter, a is a scale parameter and y is a shape parameter.

This 1s the Generalized Extremc Valuc (GEV) distribution and holds for the
maxima of observed values of x, regardless of how x 1s distributed itself. The paramctcr y
is often rcferred to as thc extreme value index and controls the behavior of the upper tail
of the distribution. A trio of extreme value distributions arises as special cases of the
GEV distribution depending on the value of y. These distributions are the Gumbel,
Freschet, and Weibull distributions.

A Gumbel or Type I distribution arises when y equals or approaches zero:

R = ex;{— ex;{—ijj (2.30)

a

For the positive values of the shape parameter y, a Freschet or Type 11 distribution arises:

x<0

0
Faix)y= cxp(—(X—ejn‘J i (2.31)

a

Here £ is a positive shape parameter.
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bl k
Fanlx) = 1 —exp —("— )] x>0 (2.32)

Here k 1s a positive shape parameter.
2.1.3. Application Extreme Value Distributions: State-of-the-Art Review

Extreme Value Theory can be found in many applications in Naval Architecture.
A typieal application is estimating the maximum lifetime wave loads on a ship hull using
Weibull distribution. McTaggart pioneered the application of extreme value distributions
for the problem of assessing the dynamie stability of ships.

MeTaggart (2000, 2000a, 2000b), McTaggart & de Kat (2000) focused on fitting
extreme value distributions to roll maxima for predieting the hourly capsize rnisk of a
naval combatant in a stationary seaway. He investigated the use of the several
distributions for fitting the roll maxima generated from simulations using the time
domain, ship motions eode FREDYN. The following extreme distributions were
investigated:

¢ Generalized Extreme Value

¢ Freschet, referred to as a Type 11 Maximum Distribution
¢ Gumbel

¢ Gumbel Limited Range (GLR)

o Transformed Gumbel

McTaggart found that is was often difticult to obtain a satisfaetory distribution fit
to the roll maxima. Since the prediction of capsize risk was the goal. the Gumbel Limited
Range (GLR) fitting technique was developed. The distribution fit used a least squares
method to the empirical CDF which he computed as:

i
Nl

F‘(¢mu.\‘i): (23;)

In applying the least squares method, only the error in the upper portion of the samnple of
roll maxima is considered. Through this method, the hope was that this partial
distribution fit was useful for extrapolating to the roll angle that was eonsidered for
capsize.

The problem of poor distribution fit that McTaggart was attempting to solve with
the Limited Range approach eaused the extreme non-linearity of the motion of a ship
around the peak of the ship’s righting arm (stiffness) curve. The ship starts responding
differently once the roll angle approaches or excceds this value (to complicate matters,
this point actually fluctuates in a seaway). This change in system dynamics calls into
question one of the fundamental assumptions of Extreme Value Theory, that the data 1s
Independent and Identically Distributed (11D). 1f a sample of roll maxima has values
larger and smaller than the roll angle where the righting arm peaks, the data may not be
identically distributed. By considering the upper portion of the data for the least squares
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fitting, the Limited Range approach attempts to deal with this issue; however, the
empirical CDF being fit still eontains all of the data.

In the applieation of the above approach, generally 30-minute simulation runs
were exeeuted. The desired output from the proeess was hourly eapsize risk. The
following equation is used to adjust the exposure period of the results:

Oy p(¥)=1- [l ~ Qv p, (’()]'D/D‘ (2.34)

where Qxp is the exeeedanee probability (referred to as the Quantile funetion or inverse
CDF) of X in duration D. Dy is the duration of the simulation.

2.1.4. Method of Maximum Likelihood

The extreme value distributions eonsidered above have two or three parameters.
Fitting the distribution to the eollected data requires finding these parameters. The idea of
maximum hikelihood method is to find such values of parameters that are “more likely” to
fit the data.

What is “more likely”? The data points that have been observed are the facts. At
the same time they are instanees of a random variable. Just beeause they were observed,
these particular values are more likely than others. That means that the probability of
observing these partieular values reaches maximum when the correct parameters are used
for distribution.

To illustrate applieation of this principle, consider a set of » identieally distributed
independent random vanables. x;, i=1,2,... n. Assume the normal distribution for the first
example:

e _(x-p)
f(.\)-moexp( S ] (2.35)

Where p stands for the mean value and o is standard deviation. As all the random
variables from the set x;, i=1,2,.., n are independent of their joint distribution and is a
produet of marginal distributions (2.35):

w1 (=)’
(X x,)=| | =—€Xp| ~——5
et Hmoe"‘{ =

(2.36)

It 1s not difficult to see that:

1 ni2 ] n 5
4 e _(27102) exp| — 57 ;(x,. —p) ) (2587)

The joint distribution (2.37) depends on two parameters: the mean value p and
the standard deviation . The objective is to find such estimates for n and o that
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maximizes the joint distribution f{xi,..x,). As xj....x, are random numbers the result of
maximization also 1s a random number. Therefore the estimate is actually a result of
averaging:

(p',c' ): E(p.o): E(urgmax(/(.\', X, ) (2 38)
[T,
Here £(..) 1s an averaging operator.

The instances of random variable xi,..x, are particular numbers, while the
parameters p and o are unknowns. It is logieal to consider (2.37)as a function of the
parameters:

A | fe %
yo)im | =t | expl === 3, =pu) 2 39
/() [2m_) exp[ 20_(2(\ u) ]j (2.39)

i=l

The maximum of funetion (2.39) is to be searched: this function is usually
referred to as the maximum likelihood estimator:

(p.cs) =arg max(f(p.c)) = argmax(L(p.o)) (2.40)

p.o .o

Here symbol L is used for the maximum likelihood estimator.

As positions of maxima cannot be affected by monotonic transformations, the same
values will be obtained from the logarithm of the maximum likelithood estimator:

(u.o)=arg max(log(L(p,c))) =argmax(L *(p1.5)) (2.41)
p.o .o ’

The basis of the logarithm to chose depends on the particular form of the expression. The
natural logarithm secems to be the most reasonable choice for the formula (2.42):

e i=l

=2 ) o (i(x,-p)?]

3 \Zne ) ZelS

PRSRRTOIT | T O N T RS |
15 (p.o)—ln[[znoz) exp( 70:(2(.\,. 1) )] =

Most likely estimates for the mean value and standard deviation now can be found as:
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oL*(u.0) _,
0
i (2.43)
oL* (o) _,
oc
The first equation in the system (2.43) yields:
L*(uo) 0 (n [ 1 (L Wi
o _o(ny 1) (5 )
o ou\2 \2no 2o ol =
" (2.44)
n n > ’] "
=0-————) \x,—u) =——; x;,—np (=0
o« S
The equation (2.44) is linear and has a unique solution:
] n
o= _Z_\.i (2.45)
n i

Taking the average from both sides yields the searched estimate:

= I ”n I n
o= E(= E[;Zx,- j=;Zu = (2.46)
i=l i=1

Therefore the observed average represents the most likely estimate for the mean value.

Consider the second equation of (2.43):

oL * 0 ' ‘ F
L e e pa | B
0o o2 \2rno” ) 20°\'G ’

=—§+L3[Z":(x, —u)2)=0

G \ia

(2.47)

Further consideration of (2.47) yields:

l =y 2 2 l 3 )
?(Z(&—u)’j% o o’'==>(x-n) (2.48)

i=1 noig

To complete the solution of the second equation of (2.43), the solution of the first

equation (2.45) has to be substituted into (2.48):
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(2.49) |
| <&, s

( J

1

Standard deviation does not depend on a mean value. Therefore equation (2.49) remains
valid after the following substitution:

y=x—-H

3 " ey VIS R (2.50)
B R WS o)

i=1 i=1

Expanding the square of a sum in the equation (2.50):

(li—"l)- = l: i—"iz ii v,y (2.51)
{f S L S

i=l j=l

This leads to the following expression:

ez noon
2 2

T — b} — —
o =3 il ™

n i=1 i=| /|
(2.52)

n—1 noon a
i Z i

n =1 i=l e l

Apphing averaging to the formula (2.52):

0*2=E("—31i.‘] [ ii\\ ;] (2.53)

- =1 =1

As x..x, and corresponding vi...p, are independent random varables, the second
component in (2.53) represents, in fact, a correlation moment:

P_zzu

=) =l

:z/]= (2.54)

Continuing consideration of (2.53) leads to:
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3 _] " o
(c*)’ = E[ — Zy"’]:
i=1

n

T
B = (2.55)
n

= n- n

Formula (2.55) confirms the well-known fact that the mean value of the
variance is biased. The estimate with corrected bias is;

(c%)’ =n—]_TZn:(x, =i (2.56)
i=l

Finally, the maximum likelihood method leads to the conclusion that, for the
normal distribution the most likely fit 1s achieved with well-known formulae for
estimates of mean value and standard deviation.

2.2. Using Extreme Value Distribution for Evaluation of Upcrossing
Rate

2.2.1. General Approach

According to the information of the authors, the idea to use extreme value
distribution for calculation of upcrossing rate belongs to G. Hazen, who formulated this
idea and demonstrated the method in early 2009. At the moment of writing this report,
the authors are not aware of any publications of this method by G. Hazen or anybody
else.

Consider an extreme value distribution in a form of the cumulative distribution
function (CDF) fitted over record maxima, provided all the records are of the same
duration Ts. By the definition of CDF:

F (a)=P(xZa) (2.57)
The probability of the complement event is:
P(x>a)=1-P(x<a)=1-F,,(a) (2.58)

This probability can be interpreted as a probability of at least one upcrossing of
the level a by a process x(#) during time of record 7s. Assuming that the level «a is lngh
enough to ensure applicability of Poisson flow, this probability can be expressed as:

P(x>a)=1-exp(-AT,) (2.59)

The formulae (2.58) and (2.59) allow expressing the rate of upcrossing as:
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In(Fm' (a))
T

A=- (2.60)

2.2.2. Fitting Extreme Value Distribution

Following the work of G. Hazen mentioned above, a three-parameter Weibutl
distribution (2.32) was used with a numerical example deseribed in the previous section.
This example ineluded 200 records of wave elevations; each reeord was 30 minutes.
More details ean be found in the subsection 1.2.3.

The datasct for analysis is formed from the maximum value observed over a
record or a window of a smaller size.

Ty =—— (2.61)

The windowing procedure was implemented to provide the ability to control the time of
exposure.

x,=max(g,,) j=l..25; i=l..N, (2.62)
The shift parameter is found as an observed minimum of the dataset:
8=min(x,); i=1,..,N, (2.63)

Values for scale and shape parameters can be found using the known relations between
the theoretical mean value m,, theoretical variance V, , and these parameters.

(
m_ =ar(l+l)—6
k
gl "
V. :a“r(l-l-—J—m‘“
k

Theoretieal values of the mean and varianee are unknown, therefore their estimates are
used instead:

(2.64)

Ny Ny

m_=m, :z.\".; i Bl :—Z( —-m ) (2.65)
i=] H i=1

Then, the seale parameter o and shape parameter & can be found numerically
from the system of equations (2.64).
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Alternatively these parameters can be evaluated using the method of maximum
likelihood as described n detail in the previous subsection. The probability density
function of the Weibull distribution is expressed as:

5(";0 ‘.]ex _(X—O)k x>e
JwX)=1a\ « E a - (2.66)

0 x<0

Without limitation of generality, the maximum likelihood method can be
applied for shifted random variable y:

peg (2.67)

The PDF of the shifted variable can be expressed as:
k(y k-1 [ 7 JA
—|[=| exp —|= y20
S =1 a (CLJ p[ o ’ (2.68)
0 y<0

The maximum hikehhood estimator L(a., k) can be expressed as (Cohen, 1965):

Lk =TT F()= Hﬁ-(};) ex;{_(&) ] (2.69)

o

For simplification of further derivations, it is convenient to use the substitution:
=0 (2.70)

Substitution of (2.70) into (2.69) yields:

" k . Jk
L(8,k) = Hgy,.‘ ' exp[—%] 2.71)
i=l

The logarithmic estimator 1s expressed as:

A A Sk
L* (3 5) = ln(ﬂ%y:‘ [ exp[—%)j -

i=]

=nn(k)-nn(9)+ (k- l)i ]n(y,-)—lgiyik
i=l i=l

(2.72)

Maximization of the estimator (2.72) requires:
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OL*(9,k)
o8
OL*(9,k)
Ok -

0

0

Differentiation in (2.71) leads to the following system of algebraic equations:

f——-l—, yi =0
J @ 8
(2.74)

n

%+ i In(y, )—%Z\f In(y,)=0
1=l ¥

i=l

The unknown 8§ can be expressed through the unknown A using the first equation of the
system (2.74).

|
$==> (2.75)

Substitution of (2.75) into the second equation of (2.74) excludes 9 and leads to a
nonlinecar algebraic equation with only one unknown, 4:

"

l I n Z»“f ll](.“l)
—+—Zln(y,)——’;'—"—=0 (2.76)
£ W

S

i
i=l

Equation (2.76) then can be solved with any appropriate numerical method.

Figurc 2.1 shows an example of fitting a Weibull distribution using both the
moment method ((2.64)-(2.65)) and the method of maximum likelihood ((2.75)-(2.76)).
These data represent 200 maximum wave elevations observed during each record, so it
was only one window per record. This figure also shows the results of the Pearson chi-
square goodness-of-fit test for both methods. As it can be seen, both methods have
passed.
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0=7.364; d=4
04,
PDF Method of moments
2.0a0=2.173

03] ' \ 13=5.61 P d)=0.468

| k=1.76 a=2.12
¥°=9.49 P(y’.d)=0.148

\ . Method of maximum likelihood
0241

0.1 4
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<

k x=max((), m

v 8 9 10 1 12 03 14

Figure 2.1. Histogram of Extreme Wave Elevation with Weibull distribution fitted

Table 4 shows the results of the goodness-of-fit test for a series of windows
length. As ean be seen from that table, once a window becomes too short the Weibull
distribution does not fit the data anymore

Table 4. Results of Pearson chi-square goodness-of-fit test

N. | T, n Omax | d 0 Method of moments Methods of maximum
likelihood
k a x2 /o k a x2 P

1 1800 200 { 1.01 | 9 7.364 2.000 2173, | 'S:61 0.468 | 1.76 2012 9.49 | 0.148
2 900 400 | 1.11 | 9 6.248 | 2.277 [2.704 | 9.1318 | 0425 [ 2.13 | 2.671 [ 113 | 0.259
3 600 600 { 1.17 [ 12 | 5.579 | 2.407 |2.979 | 18.20 | 0.110 | 2.304 | 2.958 [ 18.4 [ 0.105
4 450 800 | 1.21 | 14 | 5.123 | 2.481 3.160 | 38.72 ]4.03c-4| 2.381 | 3.141 | 38.2 | 4.03¢-4
5] 360 1000{ 1.24 | 16 | 4452 | 2.835 | 3.637 | 60.5 4.32¢-7] 2.703 | 3.622 | 54.3 | 4.68¢-6

2.2.3. Evaluation of Confidence Intervals for Weibuall Distribution

All three parameters of the Weibull distribution are determined from statistical
data and, therefore, they are random numbers. This means that the uperossing rate
evaluated with en extreme value distribution (2.60) is, indeed, a random number. As with
any other estimate, the crossing rate (2.58) needs a eonfidenee interval to evaluate the
statistical uncertainty involved.

The expression (2.64) relates the estimates of the mean value and varianee with
parameters of Weibull distribution. The eonfidence interval for these estimates can be
assessed trivially using conventional assumptions of the normal distribution of the
estimates of the mean value and variance. Caution has to be exereised, however, when
applying the normal distribution for the variance estimate, as the variance is a positive
value, while the normal distribution is supported for negative values as well.

To determine the distribution for the mean value estimate, two parameters are
needed — the mean value of the mean value estimate and the varianee of the mean value

74



estimate. As the mean value is an unbiased estimate, its mean value is equal to the
estimate itself:

* * \“ * I,‘ l \“ - 2
mim)=m_=) X ; Vim)=—"-—= S 279
‘) :Zl (m) Nu (1 _Nu )Nu :Zl( ) ( ;

Then the half-breadth of confidenee interval for the mean estimate is:
g(m.) = K; - Vim.) (2.78)

The eoefficient K depends on confidence probability f3:

B=095; K, =1.959964

279
B=09973: K, =30 .

More details on the confidenee interval ean be found in the previous subsection
(formulae (2.54)-(2.58)).

Finally, the complete estimate for the mean looks like:
m: = m(m: )ik a(m_:) (2 80)

Construction of the eonfidence interval for the varianee estimate involves more
assumptions. 1f a random variable would have a normal distribution, then the distribution
of its varianee estimate would follow the chi-square distribution. One of the most
important qualities of the chi-square distribution is it only supports positive values. This
corresponds to one of the most basie properties ot the variance — it is not negative. The
PDF of the echi-square distribution is defined by the following formula.

|
X
exp(—E) s el (2.81)

The chi-square distribution depends on a single parameter o, whieh is commonly referred
to as the “degrees of freedom™. If the chi-square distribution is used for construction of
the confidence interval, the meaning of ¢ i1s the number of points — instances of the
random variable.

With an inercased number of random values, the chi-square distributions tends
to a normal distribution; near 30 values, it is almost indistinguishable, see Figure 2.2. The
reason for the convergence of the two distributions is the Central Limit Theorem. which
states that the sum of independent, identieally distributed random variables. tends to a
normal distribution with the increase of number of components in the sum. That is why
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the normal distribution 1s also used for construction of the confidenec intcrval for the
variance wherc the number of points is largc.

At the same time, the normal distribution is supported for negative valucs as
well, which, in principle, allows a certain probability for negative variances. However,
the mean value of a random variable following chi-square distribution equals the number
of degrecs of freedom. Thus with the increase in the number of points,the entire curve
moves to the right, as it can be clearly seen in Figure 2.2. In a limit, when a numbcr of
points reaches infinity, the mean value is equal to positive infinity, leaving thc probability
of negative variances essentially zero. Nevertheless, caution has to be exercised while
using the normal distribution for the confidence interval of variances, especially when the
number of points is not that large and the dcsired confidence level is relatively high.
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Figure 2.2 Chi-square (red) and normal distribution (blue)

The main advantage of the normal distribution 1s that it is universal for a large
number of points, while the ehi-squarc distribution only can be applied when the variable
has a normal distribution. When the variable does not have normal distribution, like in
cases with extrcme valucs, the distribution of a sum of its squares may not be actually
known. However, it is known that this sum will tend to thc normal distribution with the
increase of the number of points due to thc Central Limit Theorem.

To define the normal distribution for the variance estimate, two parameters arc
needed: the mean value of the variancc estimatc and the varianec of the variance
estimate. As it is known (and shown in the previous subsection) that the variancc estimate
is biased: its mean value is shifted from the mean sum of squares:

(2.82)

m(V' )= n’il v

The variance of the varianee is expressed with the well known formula:
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Here 4 1s the fourth central moment of the distribution: as the Weibull distribution has
been already fitted, the PDF 1s known so:

By = J‘_/'(x)(x-m‘)Jd\‘ (2.84)
0

The fourth central moment of the Weibull distribution can also be dircetly calculated.
The exeess kurtosis of the Weibull distribution 1s given by:

A Bl 0 gy S 1 S R g O )
Ve = v (2.85)
(rl_rl_)

Where: I'; = I'(1+1/k)

The fourth eentral moment 1s then:

Hy=(3+y,)0 (2 86)
The half-breadth of the confidence interval for the mean estimate is then:

e(V,) =Ky -V (2.87)
Finally the complete estimate for the variance is:

Vi=mV)teW)) (2.88)

T'he third parameter 1s the shift. It 1s defined as a smallest among observed
extreme values. Therefore it is the first order statistic (sec previous subsection) and has
the following distribution:

/ (0)= ‘/('”(.\’) = NR./(X)(I — F(x))\‘k l (2.89)

Where f(x) and F(x) are the PDF and CDF, respeetively, of the Weibull distribution and
arc defined with formulae (2.34) and (2.68).

There 1s a problem with using the distnibution (2.89) for the construetion of the
confidenee interval direetly. It does not support values less than the observed shift v<6
Therefore, all possible values of the shift are larger than the observed one. At the same
time there 1s no reason to beheve that the observed shift 1s the smallest possible.
Therefore 1t 1s assumed that the observed shift is some sort of mean value, which can be
calculated as:
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m,, = Ifm (x)xdx (2.90)
0

Then the distribution (2.89) shifted by the value m;);
f(0)= Ny f(O—m )1-F(®O-m, )" (2.91)
Both the original and shifted distribution are shown in Figure 2.3. Justification
of such an approach could bc offcred as follows. For the uni-modal, slightly
asymmetrical distribution, the mean value can be considered as an approximation for thc

mode. Following the principle of maximum likelihood, the obscrved valuc of the shift
should have maximum probability, i.e. should correspond to the mode.
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Figure 2.3 Distribution of the first order statistic and distribution of shift

Once the distribution of the shift parameter has been accepted, further
calculations of the confidence interval are trivial (see details in the previous section,
formulae(2.54)-(2.57)). The cumulative distribution function of the shift parameter and
its derivative are expressed as:

0
FO)= [/(0)d0; O(P)=im(F(9)) (2.92)

0 -m,,

Here the observed value of the shift is identified with an asterisk to avoid confusion with
the shift parameter as a variablc. The boundaries for the shift paramcter are expressed as:

B =Q(l_2B j ;A =Q[L;—B) (2.93)

Here B is the accepted confidence probability.
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To complete the evaluation of the lower and upper boundaries of the Weibull
distribution, thc variable can be scaled to correspond to the upper and lower boundaries
of the estimate of the variance and shifted to accommodate variability in the mean value
estimate and the shift parameter.

The scaling is applied directly to the shifted data points (see formula (2.67)):

m(Vy—e(V))

- m(l'_:)+8(l'_:)
m(V.) =

m(} "' )

(2.94)

,"I " = ."

Secaling of the variable does not affect the shape parameter. It can be verificd by the
solution of the equation (2.76) using data points scaled to the lower or upper boundary.

"
A‘ " ’
Z Viow In () low, )

L+liln(\’,’::‘? )— = =0 (2.98)
e

k %

I” fon

: z},lnn
=1
"
Ay ( )
l l a 5 Z.‘ low n ‘“p
Ry =l -

=yl -0 2.96)

ny n =1 v up

It was found that within the margin of numerical tolerance:
k = k/uu = ku/' (2 97)

Therefore, as expected, scaling does not affect the shape parameter. The boundary for
scaling parameters can be found using formulac (2.75) and (2.70)

k \ —k
| & | &
k k
— —— ? -, — ) ')
(xi.m - : ,.‘ low, au/) = : ,-‘ up, (“ 98)
(S n

The lower and upper boundaries of the Weibull distribution itself ean be found by
applying a respective shift to accommodate variability of the mcan value and shift
parameter.
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0 x—g(m )< 9.

Figure 2.4 shows Weibull distribution with upper and lower boundary calculated for.
Ny=1.

Formulae similar to (2.99) can be written for CDFs as well:

N k
e alm =0 .
F/mr( \_) _ 1 I7E exp _[ : - X+ 8(’71‘,) Z el{m_
whi X557 = a/mr

0 x+g(m)<0

low

(2.100)
x—g(m.)-6

A
: 1-exp| -| — 88—~ x—g(m )=8
=y P [ a ] =

up

0 x—g(m. )<9

up

Figure 2.5 Shows CDF for Weibull distribution with the confidencc interval

The procedure described above has not formally been proven. Rather, it has to
be considered as an approximate method allowing the evaluation of statistical uncertainty
of upcrossing rate calculatcd on the basis of extreme value theory. This analysis can bc
found in the next subsection.

PDF
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Figure 2.4 PDF for Weibull distribution for extreme values (blue), its upper (brown) and lower (red)
boundaries
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Figure 2.5 CDF for Weibull distribution for extreme values (blue), its upper (brown) and lower (red)
boundaries

2.2.4. Evaluation of Confidence Intervals for Upcrossing Rates

Formula (2.60) relates the CDF of an extreme value distribution to  the
upcrossing rate. The procedure described in the above section derived the approximate
CDF based on the Weibull distribution corresponding to lower and upper boundaries of
confidence interval. This confidence interval retlects the uncertainty introduced by
statistical estimates of the parameters. These boundaries are to be used to estimate the
confidence interval for the rate of upcrossings:

Jow up
= _ln(Fnh/ (a)) A ln(waljl(")) (2.101)
low — ’ up -
T T
This confidence ntcrval 1s shown in Figurc 2.6 along with theoretical value and
estimates obtained with other methods (dcscribed 1n the previous seetion). The level of
crossing was 9 m. The method based on the extreme value distribution provided the
correet estimate; the theoretieal solution is inside the confidence interval. The width of
the confidence interval is slightly wider than the result based on the censored time before
the first crossing.

When the crossing levcl is raised up to 10 m (see Figure 2.7), the confidence
interval of upcrossing rate based on extreme values becomes narrower than the
confidence interval based on e¢ensored time before the first uperossing. Onee the crossing
level becomes higher, the number of crossings decrease dramatically and the statistical
uncertainty of mean time before the 1™ upcrossing also inercases. Meanwhile, the volume
of samples for extreme values does not depend on how high the crossing level is or if
there any crossings at all. The dependenee of the width of the confidence interval on the
crossing level will be examined later.

Further inerease of the crossing level, up to 11 m, with only 10 crossings leads
to dramatie widening of the confidence interval for the upcrossing rate based on time
before the first upcrossing, see Figure 2.8. The rate estimated with extreme value
distribution retains the meaningful width of the contidence interval that still contamns the
theoretical value.
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Figure 2.6 Comparison of different methods to estimate upcrocssing rate for the numerical example
for level 9 m (Total number of upcrossings 153).
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Figure 2.7 Comparison of different methods to estimate upcrocssing rate for the numerical example
for level 10 m (Total number of upcrossings 58 ).

Lowering the Icvel of crossing to 7.75 m leads to significant widening of the
confidence interval of the crossing rate based on the extreme value distribution (see
Figure 2.9). Attempts to lower the level further leads to the impossibility to calculate the
confidence interval as the crossing level becomes larger than the lower boundary of thc
shift parameter. To alleviate this limitation the length of the windows needs to be
shortened. It 1s also leads to a narrower confidence interval, see Figure 2.9.
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The “big picture”™ is shown in Figure 2.10 and Figure 2.1 1. The estimate of the
upcrossing ratc along its confidence interval evaluated from the distribution of cxtreme
values is shown as a function of the crossing level. The theoretical solution is also shown
in thesc figures. Inserts show the same curve for higher crossing levels. Figure 2.10
shows the curves for Ny,=1, so the window length equals to the length of the record. while
Figure 2.11 contains the same picture for Ny=2, there are two windows per record.
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Figure 2.8 Comparison of different methods to estimate upcrocssing rate for the numerical example
for level 11 m (Total number of upcrossings 10).

The curves on the both Figure 2.10 and Figure 2.11 follow the same pattern.
The theoretical solution is contained within the confidence interval until it reaches a
certain crossing level value. This value is about 7.4 m for Ny=1 and 6.2 m for N,=2. This
1s caused by the limitation of Weibull distribution as it starts from the shift paramecter
which is thc smallest among obscrved extreme values. Naturally, the probabihity of
exceeding cannot be evaluated below this level. Using a shorter window makes the shift
parameter smaller and, therefore allows working with lower crossing levcls.

Looking at Figure 2.10 and Figure 2.11makes it clear why the confidence
interval increased so much in Figure 2.9 for Ny=1. Thc crossing valuc 7.75 is not very far
from the limit; the curves in Figure 2.10 turn upward and become almost vertical.

While the methods based on the extreme method do not work very well tor
smaller crossing levels, it seems to give excellent results for the higher level where no
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statistics of crossing s available. In the examplc considered, there 1s only one crossing on
the level 12 m. The maximum value observed is about 12.07 m, so there is not an
upcrossing for the level of 13 m and higher. As it can be seen from the inserts in Figure
2.10, the method continues to produce correct results well beyond that level. Therefore 1t
has a potential for statistical extrapolation.
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Figure 2.9 Comparison of different methods to estimate upcrocssing rate for the numerical example
for level 7.75 m (Total number of upcrossings 425 )
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Figure 2.10 Estimate of upcrossing rate based on extreme value distribution with confidence
intervals as a function of crossing level N,=1

Making windows smaller, however, dccreases performance of the method for
higher levels. As it can be seen from the second insert in Figure 2.11, the theoretical
solution leaves the confidencc interval somewhere around 15.4 m.
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Figure 2.11 Estimate of upcrossing rate based on extreme value distribution with confidence
intervals as a function of crossing level N,,=2

2.3.Summary

Order statisties deseribe the behavior of the k-th largest observation out of total
number n. Indeed, it is a random variable and, as any other random variable, can be
characterized by a distribution.

The behavior of the largest observation (case when k = n) is the subject of the
study of Extreme Value Theory (EVT). The distribution of the extreme values 1s a linut
distribution and does not depend on the distribution of the random variable of a stochastic
proeess. If the extreme value distribution is applied to a stochastic process, all
observations must be done over the same time interval.

The parameters of an extreme value distribution can be determined trom the
observations using the Method of Maximum Likelihood Estimation (MLE). The MLE
method 1s based on the faet that the obsereved data points are, aetually, random numbers.
As these particular values were observed, therefore they are “more likely™, or their
probability of oeeurring is maximum.

The extreme value distnibution parameters are random numbers, as they are
ealculated from random varniables. Therefore the extreme value distribution fitted to the
observed data is also a random figure and subjeet to statstistical uncertainty. The
confidenee interval is evaluated for the extreme valuc distribution as a measure of
statistical uncertainity.

The extreme value distribution can be used for the evaluation of the upcrossing
rate, based on the probability of no upcrossing events oeeurring during the observation
time. The eonfidenee interval also ean be evaluated for for the upcrossing rate calculated
with this method.
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3. Peaks over the Threshold

This section describes a method of statistical extrapolation using thc probabilistic
propcrties of the pcaks of the envelopc that cxcced a given threshold.

3.1.The Problem of Rarity

3.1.1. Introduction

Large roll events are rare. The main objective of this work is to develop a method
ot that would be ablc to charaeterize the probability of events that are too rare to observe
in a model test or numerical simulation. This problem is known in the Naval
Arehiteeture eommunity as “The Problem of Rarity™.

The problem of rarity arises when the average time before a stability failure may
oceur is very long in comparison with thc natural roll pcriod, which serves as the main
time-seale for the roll motion process (definition from SLF S1/WP.2 Annex |
paragraph 6.3.2).

While the problem of rarity was the main obstaclc for application of time domain
methods during the last two decades, the term was introduced only relatively recently
(SLF 50/4/4). Some review of available treatments of this problcm is available from
Bcelenky, et al, 2008.

3.1.2. Statistical Extrapolation as a Solution of Problem of Rarity

The main challenge of the problem of rarity comes from thc nonlinear nature of
large-amplitude roll motions. To illustrate this statement, one can imagine that roll
motions can be deseribed by a linear differcntial equation; then the roll responsce could be
completely eharaetcrized by a response amplitude operator within the frequeney domain.
As a lincar operator does not change the normality of the distribution and the wave
cxcitation can be eonsidered as a normal process, the distribution of the response would
be known to be normal. In this case, the theory of upcrossing would provide the
nccessary probabilistic eharaeterization of erossing any level and the problem would be
fully solved.

Even if the nonlinearity would be mild, application of a linearization procedure
could be justified. This means that it would be possiblc to find such a linear system that
would describe the roll motions with suffieient aceuraey within a relatively wide range of
variances of excitation.

The physical reality is different, however. It is well known that largc-amplitude
roll motions cannot, in general, be eharacterizecd by normal distribution (Belenky &
Sevastianov 2007). The type of distribution depends strongly on the shape of the ship’s
righting arm curve, whieh may ehange significantly in wavcs. This leaves time domain
numerical simulations and model testing as thc only available options to characterize the
large-amplitude roll behavior of a ship.
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The principle of separation is what allows the problecm of rarity to be solved.
Instead of one problem with very rare events, two or more related problems are
considered: “non-rare” and “rare”. The “non-rare” problem, by its definition, should be
solvable by a convcentional numerical simulation or model test. For example the time-
split method (Belenky, et a/ 2007) considered upcrossing of a level around the maximum
of the GZ curve as the “non-rare” problem. The “rare” problem then considered the
probability of capsizing once this threshold was crossed. Thc “rare” problem was solved
by a series of short simulations trying to find the initial conditions at upcrossing that will
lead to capsize. For a single DOF roll problem, this means finding the critical roll rate,
such that exceeding this critical roll rate when the threshold is crossed leads to capsize,
see Figure 3.1. The procedure for finding the critical roll rate is illustrated in the insert of
Figure 3.1.

The solutions for the non-rare and rare problems can then be combined. The
combined solution gives the probability of crossing the threshold with initial conditions
that would lead to capsize (roll rate exceeding the critical roll rate).
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Figure 3.1. Summary of time-split method: separation principle and critical roll ratel

The same principle is used here. The “non-rare” problem is crossing a threshold
that is low enough that a statistically significant number of crossings can be observed in a
model test or numerical simulation. The “rare” problem is a statistical extrapolation of
the data above this threshold, see Figure 3.2.
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Figure 3.2 Summary of the current method: separation principle

Nonlinearity 1s accounted for by separating the small and large-amplitude motions
with the threshold. If any sort of statistieal fit is used on roll motion data n its entirety,
the resulting fit will be dominated by the small-amplitude motions where the roll motion
is still relatively linear, and the influence of nonlinearity will generally not be represented

properly. The threshold must therefore be high enough, so that the influence of

nonlinearity above that threshold can be considered substantial. It eannot be chosen
based purely on statistics. Physical considerations based on the shape of the GZ curve

must be included as well, see Figure 3.3. These eonsiderations, however, are outside of

the scope of this report, so therefore the threshold is assumed given.
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Figure 3.3 Nonlinearity and location of the threshold

3.1.3. Crossing of Two Levels

Prior to eonsidering the statistical extrapolation, consider the relationship between
the upcrossing rates of two levels. Consider a stationary differentiable process x(7). The
objective is to find different ways to express the uperossing rate of level «» through the
upcrossing rate of level ay, provided that a» > a.

Generie formulae for upcrossing rates are as follows:
& = fla) [/ (Dt & = fla) [/ (D (3.1)
(] 0

The formulae (3.1) immediately yield one way:
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f(a,)
s =GP P=——== :
= f(al) S

If the first level is crosscd, thc value P can be interpreted as a conditional
probability to cross the second level.

Consider an envelope defined as:

A1) = x(0) + y(0)° (3.3)

Here y(r) is a complimentary process obtained as a the result of a Hilbert transform.

If an upcrossing of a level has occurred, a value of the envelope exceeding that
level exists in the local vicinity. The local vicinity is defined as an interval of time while
the process x(¢) remains above the level a». The local maximum (defined as a maximum
of the envelope located in the local vicinity) of the envelope limits the local maxima of
the proccss. Therefore whether the process will cross the level a» depends if the local
maximum of the envelope exceeds this level or not.

The probability of the envelope exceeding the level a, can be expressed as:
P(4>a,)= [f,(4)dA (3.4)

The conditional probability that the envelope exceeds level a; under the condition
that level a; was previously exceeded:

[/ ()da
P(A>a,|A>a)="—— (3.5)
[JACIZ

Therefore another way to express the second upcrossing rate is:

[ .4
};2 =& . (3-6)

1=
[ 1. ()da

Equivalency of formula (3.6) can be formally proven for a normal process, as the
distribution of the envelope is known to follow Rayleigh
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Substitution of (3.7) into (3.6) yields:

(3.8)

I ‘
expl — exp[ s J !
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T v P 2w

For any type of distribution of process x(r), comparison of formulae (3.2) and
(3.6) yields:

&P

ﬂ [ £ (A)da
P= Slay) _ “: (3.9)
T4 [ rtpa

Having in mind that the envelope contains all the peaks, the formula (3.9) also can
be interpreted as the relationship between an uperossing and a peak. As it is shown in
Figure 3.4, if a peak is above the threshold, upcrossing did occur as the stochastic process
is continuous. There 1s, therefore, a one-to-one correspondence of the occurrence of an
up-crossing of a level and the occurrence of a peak value over that level. The
consequence of this is a practical one. The peaks may simply be used as a surrogate for
the occurrence of upcrossings.
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Figure 3.4 Relations between peak and upcrossing
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3.2.Properties of Peaks

As the peaks over thc threshold, in principle, can be used as surrogate for
upcrossing, it makes sense to study the characteristics of peaks in detail.

3.2.1. Distribution of Peaks

The total number of positive peaks found in the wave elevation sample dataset
was 31,065. Positive peaks were defined from the following conditions:

xmax = x(’max ) | Imu\ : (X([max )= O) M (’\:(,max ) < O) (3 lO)

Figure 3.5 shows a histogram of positive peaks superimposed with a Rayleigh
distribution. A notable feature of thc positive pcak sample shown in the histogram i1s the
presence of negative values. They correspond to sccondary peaks, which could be
expected as the spectrum is not narrow.

Obviously a Rayleigh distribution is not suitable here. It known that peaks of a
normal process, characterized by a moderate bandwith spectrum, have a Rice distribution
that tends to a Rayleigh distribution with a decrease of the bandwith and to the normal
distribution with an increase of bandwith.

03T pdf
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Figure 3.5 Histogram of positive peaks and Rayleigh distribution

Part of the distribution of the positive peaks, nevertheless, can be described by a
truncated Rayleigh distribution, defined as follows:

f.a)=k, (a,)ﬁem(—za—l;J (3.11)

Here £, is a normalization coefficient depending on the truncation value a,, V, is
the variance of the process x. The normalization coefficient can be evaluated in closed
form as:
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k,(a)= I—CXP[ 21: ]da = GXp % (3.12)

However it is better to evaluate it in diseretized form using the width of the
bucket Ax:

1

vh
/\'"(a,)=[ Z/ (a, )Av] v a,=a,, (3.13)

i hzg

Where beg is the index corresponding to the value of truncation a,. The histogram also
needs to be re-normalized:

" Nk :
k,,(a,)z[Zh,A\'J . a,=ag, (3.14)

i=beg

The trunecated Rayleigh distribution and truncated histogram are shown in Figure
3.6. The value of truncation was chosen to pass the Pearson chi-square goodness-of-fit
test; the results of which are also shown in this figure.

03T p.df A
M Pearson chi-square goodness-of-fit test
ST Fs Number of buckets 46
02T v N}:\ Start bucket 23, value 1.51
W N ¥’=55.54 d=45 P(x’.)=0.135
0.1 T

0 2 4 6 8 10 12
Figure 3.6 Histogram of positive peaks and truncated Rayleigh distribution

As it can be seen, the results of Pearson chi-square goodness-of-fit test shown n
Figure 3.6 does not rejeet Rayleigh distribution for peaks starting from the bin 23, which
corresponds to 1.51 m. This means that above the truncation value, secondary peaks are
not statistically signifieant, so most of the sample population consists of primary peaks
that belong to the envelope. The latter circumstance leads to applicability of Rayleigh
distribution.

A similar picture can be observed for the sample of wave elevation recorded by a
wave probe moving with constant speed and direction (see subsection 4.2). For
following seas, the encounter spectrum becomes very narrow banded (see Figure 4.10 in
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subsection 4.4.1). The entire histogram is shown in Figure 3.7. Visually, it looks much
more like Rayleigh distribution with a very small negative area. However, it takes setting
the truncation starting at bucket 5 with the value of 0.54 m to get the Pearson chi-square
goodness of fit test to pass, see Figure 3.8.
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Figure 3.7 Histogram of positive peaks for the case with forward speed 15 knots and Rayleigh
distribution
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Figure 3.8 Histogram of positive peaks for the case with forward speed 15 knots and truncated
Rayleigh distribution

3.2.2. Estimate of Rate of Events for Positive Peaks

Following the concept of the upcrossing rate, it is possible to come to similar
formulations for positive peaks using statistical extrapolation.

Consider a sample of stochastic process x, presented in the form of an ensemble
of N records. Each record is represented by a time history of Npr points with the time
step At, totaling n= Npr-1 time steps. Then the event of occurrence of a peak exceeding a
given threshold, or the level a, can be associated with an auxiliary random variable, W,
defined for each time step as follows (see Figure 3.9):
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Figure 3.9 Auxiliary random variable for positive peaks over the threshold

This random variable W is defined analogously to auxiliary random variable U,
see the subsection 1.2.1. Following the same logic, the total number of all crossings is
just the sum of the values of the auxiliary variable for all time steps for all records:

n A R

Ny=D. )W, (3.16)

=l j=1

An estimate of the probability that a peak exceeding the threshold will occur at
any given instance of time is given by:

‘ N, I S
= = W 3.17
Pow nN, nN, ,Z,; e ( )

The mean number of peaks over the threshold per record:

g Vg |
my, =—=— W, (3.18)
! NR NR ;; !

The rate of cvents for the positive peaks over the threshold can be introduced
analogously to the rate of the upcrossing. Its estimate over a finite volume of data i1s
defined as:
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While the theoretical definition can be obtained as a result of a linit of transition
for an infinite number of records and infinitcly small time step:

A = hm N = lim — lim
e Ny PPOT " Ny N AL ,Z,; dt N replfy ;,Z:
Ar—0 \/—»0 (320)

1 N l . 4
=— lim — lim p, = il
dt Ne2* nN dt o dt

The confidence intcrval for the cstimatc of thc rate can be computed using a
binomal distribution for the auxiliary vanable W, exactly in the same way as it was done
for upcrossings. The results for the 9 m crossing level shown in Figurc 3.10 (for zero-
speed casc)
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Figure 3.10 Upcrossing rate and rate of positive peaks over the threshold. Crossing level 9 m

Similar results for a range of levels are shown in Figure 3.11, whilc numerical
values can be seen in Table 5. For all of the cases, with the exception of one (a=10 m),
the confidence interval of the estimate of the rate of events for positive peaks over the
threshold contains the theoretical upcrossing rate. The exception is likely to be caused by
random reasons, as it is local. In fact it can be caused by a peak in the beginning of the
record, so it was counted as part of sample of peaks, but there were no upcrossing
corresponding to that peak, as the process probably crossed the level before time zero (for
10 m crossing level there were 60 peaks and only S8 upcrossings, so two peaks were in
the beginning of the records).
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Figure 3.11 Theoretical upcrossing rate (red line) vs. rate of events of positive peaks over the
threshold

3.2.3. Poisson Flow and Positive Peaks

The equivalence between an upcrossing and a positive pcak over the threshold can
be further illustrated by demonstrating that positive peaks over the threshold follow a
Poisson flow. A direct tcst of a Poisson flow was applied as described in the subsection
1.3.5 on page on page 49.

Eaeh record was divided by N, windows of length 7, to keep the maximum
number of event below 7. Then, the sample was created by counting the number of
positive peaks over the given threshold in each window. A Pearson ehi-square goodness-
of-fit test was used to eheck the applicability of the Poisson distribution based on the
statistieally estimatcd rate of cvents for positive peaks over the threshold. The results are
shown in Table 5. The mean valuc and variance wcre cstimated, and their ratio 1s also
ineludcd in Table 5 as an indicator of applicability of Poisson distribution. Figure 3.12
shows details for the erossing level/ threshold of 9 m.

The results from Table 5 show that the Poisson distribution is not rejected until
the threshold 1s lowered to between 5.5 and 5.25 m, whieh is the same as was for
upcrossings, see section 1. This is one more indication of statistical equivalence of thesc
random cvents. Finally, Figure 3.13 shows the histogram for | m level of crossing. Of
course,thc Poisson distribution is rejected, as most of the data 1s clustered around 3 and 4
events per 46 second windows, which corresponds to a variation around a mean period of
the process of 12.6 s. A visual indieation of the inapplicability of the Poisson distribution
is given by the more sharp form of the histogram, eaused by the eoneentration of data in
buekets near the mean period.
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Crossing level 9 m
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Duration of time window 7;=1800 s
Volume of sample 200
Estimate of mean value m;, =0.77
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Figure 3.12 Probability mass function of number of positive peaks over the threshold during time
window. Poisson distribution is not rejected

Table 5. Applicability of Poisson flow and rate of events of positive peaks over the threshold

L | Bk T, mdv; Dircct Poisson Test :'altlgc:)rt?lical Ratc of positive peaks over threshold
Neax d x' | Praplx’.d) | upcrossings low cstimatc uppcr

11 1 1800 | 1.047 2 0 0.02532 | - 3.23E-05 1.11E-05 | 2.78E-05 | 4.72-05
10.5 1 1800 ] 1.077 | 3 | 0.5205 0.4706 6.44E-05 S5.28L-05 | 8.06E-05 0.000111
10 1 1800 1.148 3 1 1.178 0.2778 0.000124 0.000125 | 0.000167 0.000211
9.5 1 1800 | 1.059 | S 3 3.467 0.3251 0.000232 0.000225 | 0.000278 | 0.000333
9 1 1800 1.099 S 3 2.491 0.4769 0.00042 0.000361 0.000428 0.000497
8.5 1 1800 | 1.094 | 6 4 1.481 0.83 0.000737 0.000622 | 0.000708 [ 0.000797
8 1 1800 1.384 7 S 7.443 0.1897 0.00125 0.001i03 | 0.001217 0.001331
1.5 2 900 1.088 8 6 4.708 0.5818 0.002055 0.001903 | 0.00205 0.002197
7 4 450 1.047 7 5 1.746 0.8831 0.003272 0.003025 | 0.003208 | 0.003394
6.75 3 360 1.041 7 5 1.687 0.8905 0.004078 0.003814 [ 0.004019 | 0.004228
6.5 9 200 1.024 | 6 4 4585 0.3326 0.005044 0.004781 | 0.005011 0.005242
6.25 11 163.5 | 09925 | 6 4 1.585 0.8115 0.006187 0.005919 | 0.006175 0.006431
6 13 138.5 | 1.041 7 5 3.188 0.671 0.00753 0.007261 | 0.007544 | 0.007828
5.75 13 138.5 | 1.072 7 S 11.19 0.04774 0.009091 0.00885 0.009164 | 0.009475
585, 15 120 1.073 7 S 9.331 0.09657 0.01089 0.01043 0.01077 0.01111
525 19 | 945 1.115 7 5 31.89 6.25E-06 | 0.01293 0.01251 0.01289 0.01325
5215 19 | 945 1.115 7 &) 31.89 6.25L-06 | 0.01293 0.01251 0.01289 0.01325
5 21 85.5 19 b7 | 4 S 74.57 1.141:-14 | 0.01524 0.01476 0.01516 0.01556
4.75 22 | 82 1.218 7 5 87.16 0 0.01782 0.01746 0.01789 0.01833
3 320 | :565S 2.271 6 4 1299 0 0.04253 0.04175 0.04242 0.04308

1 39 46 6.204 7 S 6305 0 0.07103 0.07286 0.07375 0.0746
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Crossing level I m

Total 26549 positive peaks over the threshold
Number of time windows per record N, =39
Duration of time window T;=46 s

Volume of sample 7800

Estimate of mean value n1, =3.3942

Estimate of variance V,'=0.5471

Ratio m; 7/ ¥, =6.204

17=6305 d=5 P(3>.d)= 0
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Figure 3.13 Probability mass function of number of positive peaks over the threshold during time
window. Poisson distribution is rejected

3.3.The Rare Problem

Solving the rare problem means finding the probability that the process will
exeeed a given level after an uperossing of the threshold has oceurred. The only
information available is the data of the proecess beyond the threshold; these data may not
go as far as the level of interest, so it is a typical extrapolation problem.

It was shown above that if the distribution of peaks is known, then the rate of
uperossings through the given level ean be found using formula (3.6). In faet, if the data
of peaks over the threshold is used to fit the distribution, this distribution already is
conditional, therefore:

£, =& [fi(A]|4>a)dA=E (- F(4]| 4> a)) (3.21)

a

Therefore the objective of the rare problem is finding the conditional CDF of
positive peaks above the threshold.

3.3.1. POT Distribution and the Confidence Interval

For a general stochastic proeess, the distribution of amplitudes and conditional
distribution of peaks above the threshold are not known. As the process of interest is a
response of a highly nonlinear dynamical system, there is a very small chanee that such a
distribution ean be obtained in eclosed form. Therefore it needs to be fitted with some
approximate formula using available data.

On the other hand, such distribution is known to be Rayleigh for a normal
process. As the proeess of interest is a response of a nonlinear dynamical system on
normal exeitation, it may be meaningful to try a Weibull distribution as an
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approximation, kceping in mind that the Rayleigh distribution 1s formally a particular
case of thc Wcibull distribution.

Using a Weibull distribution in such a context, however, should not imply any
limiting characteristics of the distribution. In principle, Weibull distribution 1s an extreme
value distribution (see section 2). Extreme value distribution is a hnit distribution to
which the maximum value observed during a given time tends. However, using just peaks
over the thrcshold, to fit the Weibull, means that it is used only as an approximation
formula that possesses some convenient characteristics, like normalization.

Figure 3.14 shows a histogram of peaks over the threshold (for 9 m) fitted with a
Wcibull distribution along with the results of the goodness-of-fit for the Weibull
distribution fitted with the moment method and the method of maximum likehihood. Both
ways of fitting the Weibull distribution were not rejected as well as the truncated
Rayleigh distribution. A similar picture can be scen from the Figure 3.15

L2pPdf

Weibull fit, moments method, x’=1.4628, d=5, P=0.917
- Weibull fit, maximum likelihood, x*= 1.7459, d=5, P=0.8831

9
- Truncated Rayleigh distribution x*=11.205, d=7, P= 0.1299
0.8

0.6 J

N

9 95 0 105 11 115 12 125

Figure 3.14 Fitting the distribution for positive peaks over the threshold 9 m, 154 peaks total

17 ——  Weibull fit, moments method, xz”—l6.255. d=14, P=0.298

p.d.f. Weibull fit, maximum likelihood, y’= 15.258, d=14, P=0.3608
08 ¥ —— Truncated Rayleigh distribution y*=18.9911, d=16, P= 0.269
0.6 1
0.47
0.2
Xmax, 1]1
7 8 9 fo 11 12 13

Figure 3.15 Fitting the distribution for positive peaks over the threshold 7 m, 1155 peaks total
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The procedure for calculating the confidence interval for a fitted Weibull
distribution has been described in Section 2. The only difference here 1s that the shift
parameter 1s known and it is equal to the threshold. Figure 3.16 shows the confidence
interval for the Weibull distnibution fitted with the moment method for a 9 m threshold.
with both PDF and CDF arc shown. As it has been demonstrated earlier, the true
distribution of this case 1s Rayleigh; and it 1s also shown n the CDF plot. It can be clearly
seen that Rayleigh differs from thw fitted distribution enough, so that part of the curve 1s
actually outside of the confidence band. The difference, howevcr, is not very large and
the theoretical curve returns back to the confidence band around a pcak valuc of 10 m.

The results are bettcr if the Weibull distribution is fitted with the method of
maximum likelihood, sce Figure 3.17. Here the theoretical Rayleigh distribution remains
within the confidence band all the time. The evident outcome is that the method of
maximum likelithood provides better results; this is consistent with cxisting statistical
practicc, where the moment mecthod is only used to get initial values for the method of
maximum likelihood.

Lowering the threshold naturally leads to increase the of number of peaks over the
threshold and, as a rcsult, a more accurate fit. As scen from the Figure 3.18, the
confidence band has shrunken and it contains a theorctical Rayleigh distribution within.

This consideration shows that the choice of the threshold is not only dictated by
the applicability of the Poisson distribution, but also by statistical accuracy of fitting the
distribution. This question, however, needs to be addressed later when the entire result
will be obtained and compared with the “true™ theoretical answer.

p.df.
0.5+
Xmaxs M
——=%- g 1
9 _ 12 13 14
cdf
Rayleigh
distribution
054 \
X,
9 10 1 12 13 14

Figure 3.16 Confidence interval on Weibull distribution fitted with moments method. The threshold
9 m, 154 peaks total
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Figure 3.17 Confidence interval on Weibull distribution fitted with maximum likelihood method. The
threshold 9 m, 154 peaks total

[ .
a) c.d.f
0.5
'F Rayleigh
distribution
Xmax, M
7 7.5 8 8.5 9 9.5 10 10.5
by | T —
c.d.f.
i |
Rayleigh
distribution
X ) ) . X ,-\'nm\'a m
T 75 8 8.5 9 95 10 I‘U.S

Figure 3.18 Confidence interval on Weibull distribution fitted with method of moments (a) maximum
likelihood method (b). The threshold 7 m, 1155 peaks total
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3.3.2. Suatistical Extrapolation of Peaks Over the Threshold

Formula (3.21) gives the final expression for the extrapolated estimate of
uperossing rate for the level interest (the second level a»):

B ==, ) (

()
(2]
D
it

Here X', is an estimate of the uperossing rate extrapolated to the level of interest

az, A* 1s the statistical estimate (by counting) of the uperossing rate of the given threshold
a. F*(a>) 1s the CDF fitted to peaks over the given threshold ;.

As all the terms in the equation (3.22) have their boundaries of confidence
interval defined, 1t is possible to express these boundaries for the final result:

A

=x,.(1-F (a))) (3.23)

Vow

. .

)‘ Nup = ;\’up (l o F;/;) (al )) (3 24)

To evaluate the quahity of the extrapolation, the extrapolated value can be
compared with the theoretical solution, as it is available for consideration. see Figure
3.19.

Here V. is the variance of the process and }, is the variance of the derivative of the

process x(/).

Figure 3.19 shows cxeellent quality of extrapolation, as the theoretical solution
remains within the confidence interval before the numbers become too small to handle.
Unfortunately, it is not always the case. Lowering the threshold may deerease the quality
of extrapolation, see Figure 3.20. The theoretical solution leaves the confidence interval
on the level 11.18 m. It may not look like a good quality of extrapolation; however it still

was able to prediet amplitudes more than 4 m above the threshold of 7 m, which 1s above
50% of the threshold.

Theretore, the choice of the threshold s mmportant. Figure 3.21 shows a
“breakpoint’™ of the method as a tunction of the threshold. The “breakpoint™ is the level
below which the extrapolation is still good. As it can be scen from Figure 3.21, the
dependence is not monotonie. It remains almost horizontal until a threshold of 8§ m, then
starts to inerease and reaches its maximum of 26 m somewhere around 9 m. This is the
situation shown in Figure 3.19, where the theoretical value is contained in the eonfidence
interval of the extrapolated value. The level of 26 m is where the calculations were
stopped as arithmetical difficulties, related with handling a very small number, were
encountered. Also, rarity of the upcrossing level of 26 m is such that it makes
consideration impractical as the mean value before/ between the events is around 10
seeonds — is about 3.1 10'? years.
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Extrapolated estimate for upcrossing rate, 1/s
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Figure 3.19 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing
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Extrapolated estimate of upcrossing rate with confidence interval as a function crossing
level vs. theoretical upcrossing rate. The threshold 7 m, 1155 peaks total.
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Around the threshold of 9.25 m, the breakpoint falls back to the 13-14 m level
(see Figure 3.23) and remains there until the 9.75 m threshhold. Then it goes back to “no
breakpoint” (26 m) and remains there (Figure 3.24) until the data for fitting the
distribution “runs out”. The volume of data available for fitting the distribution is placed
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Figure 3.21 Breakpoint level (the level below which the extrapolation is still good) vs threshold

Figure 3.22 illustrates the performanee of the method for the 14 m level. This
level is aetually quite high; the mean time before/between events for uperossing this level
is about 44 days. Roughly, aeeeptable performanee (with very few dropouts) can be seen
from the level exeeeding 8.5 m
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Figure 3.22 Comparison of performance of extrapolation method for 14 m using different values for

the threshold

Table 6. Number of positive peaks over threshold

Threshold Number | Breakpoint | Threshold | Number of | Breakpoint
of POT | level,m POT level. m

6 2716 10 9:25 124 14.61

7 1155 11.18 9.3 119 13.64

8 438 11.24 9.4 111 14.05

8.5 255 14.8 955 100 12.8

8.75 197 222 9.75 83 25.067

8.9 174 22.24 10 60 20 |

9 154 26 10.5 29 20

9.1 144 26 10.75 16 26

9.15 138 26 11 10 13.4

9.2 132 26 ]
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Extrapolated estimate for upcrossing rate, 1/s
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Figure 3.23 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing
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Figure 3.24 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing

level vs. theoretical upcrossing rate. The threshold 10 m, 29 peaks
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Bascd on these observations, two questions need to be answered: 1) What is the
main eontributor to the quality of extrapolation? 2) How random are these results. or can
the same pieture be observed with other reeords of the same proeess?

To answer the first question, eonsider the eomponents of the extrapolated
estimate: the rate of upcrossing through the threshold (see Figure 3.25) and the
conditional probability of the given level (14 m) is execeded if the threshold was crossed
(see Figure 3.26). As it can be seen from Figure 3.25, the estimate of threshold crossing
behaves relatively smoothly, keeping the theoretieal solution within its confidence
interval. The estimate of the eonditional probability in Figure 3.26 behaves in a more
random manner. It “eatehes™ the theoretical solution with its confidenee interval starting
about 8.5 m, then “loses™ it, than “catehes™ it again. Obviously, the estimate of
conditional probability is the one “responsible™ of quality extrapolation, at least for the
sample eonsidered.

To answer the seeond question, two more examples were considered. The process
was constructed from exactly the same spectrum and discretization as deseribed in
Seetion 1. The only difference was the set of random phases that makes these sets
independent from the first one.

Figure 3.27 shows the “breakpoints’ behavior vs. the threshold for two alternative
datasets. Comparing these plots with the similar one in Figure 3.26 made from the
original dataset one can see that despite their different shapes, still there arc some
common features. There is a relative monotonic part up to about 8§ m, then the
dependence becomes oscillatory, but keeping the similar tendeney to grow. Comparing
performance of the extrapolation method for a level of 14 m (Figure 3.28) for the
alternative datasets one can see that for the alternative dataset 1, the extrapolation starts
working at 9.5 m and for the alternative dataset 2 at 8.75 m. The oniginal dataset gave the
value around 8.5 m (Figure 3.22), so, in general, the range 1s about 8.5-9.5 m.
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Figure 3.25 Statistical estimate of upcrossing rate through the threshold
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Figure 3.26 Extrapolated estimate of conditional probability that the process will exceed the level of
14 m if the threshold has been crossed

a) Altemative set | b) Altemative set 2
57 301
Breakpoint level, a», m If 25.Brcakpoint level, a;, m P 9 pose—t
207 [ P | |
15 1 i 2ot Y
B 0‘(./g, 15+ ~ g O A8 )
10 ¥ = ) . .
107
51 <
Threshold, a;, m . Threshold, a;, m
6 7 8 9 10 ifl 6 7 8 9 10 11

Figure 3.27 Breakpoint level (the level below which the extrapolation is still good) vs threshold
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Figure 3.28 Comparison of performance of extrapolation method for 14 m using different values for
the threshold

Figure 3.29 shows behavior of two components of the POT extrapolation method
for two alternative datasets for 14 m level. The upper plots show the statistical estimate
of rate of upcrossing of the threshold. The plots are very similar to each other and to the
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plot bascd on the original dataset in Figure 3.25. Thc estimatc is almost indistinguishable
with the theoretical solution for the lower thresholds. With an increase of the threshold,
the estimate slowly oscillates around the theoretical solution, while it remains within the
confidence interval. The latter one increascs monotonically with the rise of the threshold
and decrease of the number of observed upcrossings.

The behavior of the estimate of the conditional probability (lower plots of Figure
3.29) is characterized by more oscillations. The estimates on both plots, as well as for the
original dataset, in Figure 3.26, have a relatively monotonic range for the thresholds, but
the theoretical solution is not “caught” by the confidence interval. With thc increasc of
the threshold, the behavior becomes oscillatory, the confidence interval increases and
theoretical solution is included now. At Icast, the tendencey is roughly traced, which was
not clcar from Figurc 3.26 alonc.

Concluding the consideration of thesc two questions, it can be stated that the
prediction capability of the method can be advanced, by improving the technique for
estimating thc conditional probability.

It is also clcar that when the threshold is too low, the fitted conditional
distribution is dominated by thc data not very far from the threshold itsclf, which is not
necessarily allowing the correct prediction of the tail of the distribution.
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Figure 3.29 Statistical estimate of upcrossing rate through the threshold (upper plots) and
extrapolated estimate of conditional probability that the process will exceed the level of 14 m if the
threshold has been crossed (lower plots) for two alternative data sets
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3.3.3. Alterative Solution for Rare Problem

Difficulties predicting the behavior of the tail of fitted distributions are not new.
These difficulties werc one of the motivations for the development of the extreme value
theory; therefore it 1s quite logical to try to use extreme distributions for the rare problem.

Consider the probability that no upcrossing will occur through the level @, during
time T; assuming applicability of Poisson flow:

P,(n, =0,T) = exp(- A,T) (3.26)
Here, n2 is number of upcrossing through the level a2, A,is rate of upcrossing through the
level as.

Now consider upcrossing through the level a,, such as:
a,>a 3.27)

The probability that no upcrossing will occur through the level a; during time T;
assuming applicability of Poisson flow can be expressed as:

P(n, =0.T) = exp(-1,T) (3.28)

Here »; is number of upcrossings through the level @y, A,is rate of upcrossing through the
level ay.

Probability P, can expresscd through the probability Py. That is, if there are no
upcrossings through the level a), there are no upcrossings through ay; or there are some
upcrossings through a;, but the process never reached the level a;. As the events of no
upcrossing through the level a; and at least one upcrossing through the level a, are
incompatible, the probability P, is expressed as:

P,=P +Pln,=0nn >0) (3:29)

Here P(n>=0 N 1,>0) is a probability that no upcrossing occurs through the level a; and
there is at least one upcrossing through the level a;. This probability can be expressed as:

P(n,=0nn, >0)=P(n, =0|n, >0)P(n, >0) (3.30)

Here P(n,=0 | n,>0) is a probability that no upcrossing occurs through the lcvel a; if there
is at least one upcrossing through the level a;, while P(n,>0) is a probability of at least
one crossing through the level a;. This is the probability of a complimentary event to
equation (3.28):
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P(n, >0)=1-P(n, =0,T)=1-exp(-1,T) (331)

Consider an extreme value distribution obtained over timc T (the distribution of

the maximum value observed during time 7). By definition, the cumulative distribution
function is:

F,, (x,T) = P(max(x,T) < x) (3.32)

Here max(x,7) stands for a maximum value of proeess x(¢) observed during time 7.

Using the technique proposcd by G. Hazen and described in detail in Seetion 2. a
probability of a complimentary event (at least onc upcrossing during time 7) can be
expressed using an assumed Poisson flow:

| —exp(=A,T)=1- F,,.(a,.T) (3.33)

So, it elear from equations (3.32) and (3.33) that the probability of no upcrossing
through the level u; is equal to the CDF of the extrcme value observed during time 7 and
calculated for the level a»:

exp(~A.T)= F, (a,,T) (3.34)

Consider a eonditional distribution of an extreme value reaching the level a»
under condition that it has exceedcd the level ay, minding the eondition (3.27):

. SFiosn(@y, 47
R A — 7»T ¥ g, sl TR
S (\ a,,T'| x> al) F,(a,T) (3.35)

Here divisor Fri{a,,T) plays the role of a normalization coctficient.

Conditional CDF can be cxpresscd analogously to the equation (3.35):

Fyp(ay,T)

e =l | R BT = 3

£ (\ (l_ | X ‘Il) F,’Li (al,r) (, 36)
By the definition of CDF:
Fo e =a.Tlesg )= P(max(x,T) < a, | max(x,7) > g, ) (3.37)

If an extremc value observed during time T has exceeded the level a). then the
number of upcrossings through this level observed during time 7 differs from zero:

tmax (x,7)> a,} < {n, >0} (3.38)

If the extreme value observed during time 7 has not exeeeded the level ¢-, then
the numbcr of upcrossings through this level, observed during time 7, is zero.
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fmax{(x,T)<a,} e {n, =0} (3.39)
Equations (3.36) and (3.37) lead to the following:
P(n2 =0|n, >0)= P(max(x.T)<a, |max(x,T)>a,) (3.40)

Formula (3.35) relates the conditional probability of no upcrossings of the level ay
given there are upcrossings through the level a; conditional extreme value CDF:

P(n,=0|n, >0)=F, (x=a,,T|x>a,) (3.41)

Substitution of (3.41) and (3.36) into (3.29), taking into account (3.30) and (3.31),
leads to:

Fiy(a,.T)

P,=R+(1-P)
For(@,T)

(3.42)

Taking into account formulae (3.26) and (3.28) allows expressing the rate of
upcrossings of the level a, through the rate of upcrossing of the level a) and extreme
value distributions:

P F, (a,,T)
A, = ——In[ exp(- A, T )+ (1 —exp(—A,T)) L2 3.43
== | e 1) -epla )T 34
Formula (3.43) represents the complete solution of the problem with a different
formula than (3.8) . A combination of a rare and non-rare problem. It is trivial, however
to express the solution of rare problem from (3.43) explicitly:

— 3 _expf—n ) (@)
P= er{eXp( A, T)+(1-exp( )“T))FE,,(a,,T)] (3.44)

Formula (3.44) allows the use of an extreme value distribution for the rare
problem.

3.3.4. Extreme Value Distribution for Peak over Threshold

To use the alternative solution for the rare problem described in the previous
section, the conditional extreme value distribution of peaks over the threshold is needed.
The procedure of fitting the extreme value distribution was described in detail in
section 2 and briefly revisited below.

First the window size has to be set up. It should be large enough so that the
maximum value observed in each window can be considered as an independent
realization. For all further calculations, window size was taken equal to the record length
unless otherwise stated.
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The sample data has to be collected to fit a Weibull distribution. The data points
are the maximum values observed in each window. To avoid dealing with uncertainty of
the shift parameter, only points that have exceeded the threshold a, are collected. Next,
the fitted distribution is actually the conditional extreme value distribution, needed for
formulae (3.43) and (3.44). The conditional distribution in CDF form is expressed as:

0 X

T man

'\‘mu\ _al ]‘ ] X (345)

<a,

R (e e, S0 o =
£ ( max l max I) [:H (a,.T) l—CXp

"t max = al

Bl ol) [ (

Parameters of the distribution & and a are determined using the method of
maximum likelihood, with the initial values coming from the method of moments.
Evaluation of the confidence interval i1s not different than in the previous case. An
example for the threshold value of 9 m is shown n Figure 3.30.

DR T .
e / p.d.f.
06 T '
04T
S
027 \
" . . - -‘.ﬂ].l\.l m
9 10 I 12 13 14
I " ___
c.d.f //’
o/

0.5

# + a i Xmax. M

9 10 11 12 13 14

Figure 3.30 Fitting the Weibull distribution with confidence interval for peak over the threshold
data, the threshold 9 m, and window time 1800 s (time duration of entire record)

3.3.5. Extrapolation with Extreme Value Distribution of POT

Once the distribution has been fitted, formula (3.43) can be used for extrapolation.
Figure 3.31 shows sample results for the 9 m threshold, using the distribution shown in
Figure 3.30.
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Figure 3.31 Extrapolated estimate of upcrossing rate with confidence interval as a function crossing
level vs. theoretical upcrossing rate based on extreme value distribution of peaks over the threshold.
The threshold 9 m, 111 peaks

Unfortunately, good extrapolation shown in Figure 3.31 does not mean that 1t
remains the same for any threshold. Figure 3.32 shows “breakpoint” value for the
extrapolation based on extreme value distribution. In principle, a general picturc is
similar to Figure 3.21; however the lower level of the breakpoint seems to be a bit higher.

30 Breakpoint level, a,, m

sl 4 Y\ P \J P

10

Threshold, a;, m

0
1.5 8 8.5 9 9.5 10 10.5 11

Figure 3.32 Breakpoint level (the level below which the extrapolation is still good) for the
extrapolation based on extreme value distribution vs threshold

The difference between two techniques of extrapolations becomes clearer when
comparing the rare solution calculated for a particular target level — 14 m (the level where
the prediction is nceded); see Figure 3.33 and compare with Figure 3.26. In general, a
solution based on extreme value distribution is closer to the theoretical one. Most
importantly, the prediction is correct for relatively low levels where more data exist and
the confidence interval is narrower.
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Figure 3.33 The extrapolated estimate of conditional probability that the process will exceed the level
of 14 m if the threshold has been crossed (based on extreme value distribution)

Similar conclusions can be made comparing the complete results of extrapolations
between the two methods, sce Figure 3.34 and Figure 3.22. Acceptable performance can
be observed for almost the entire range of the thresholds for the extreme-value based
technique in Figure 3.34 vs. direct POT fitting shown in Figure 3.22. This difference can
be explained by the extreme value distribution model’s much better behavior of the tail of
the distribution as it is its main “specialty”.
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Figure 3.34 Comparison of performance of extrapolation method for 14 m using different values for
the threshold (based on extreme value distribution)

Figure 3.34 shows some oscillation of the extrapolated estimate around the
theoretical solution. As the threshold increases, the oscillations become larger and the
confidence interval no longer contains the theoretical solution. The deterioration of the
extrapolated estimated made with increasing threshold can be explained by a decrease in
the amount of available data to fit the extreme value distribution, as fewer and fewer
values exceed the threshold.

Averaging of the estimates over a portion of the threshold range seems to be the
natural way to improve stability of these calculations. As it 1s known from experience,
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100~150 data points i1s considered a minimum amount of data to fit the distribution. This
number can be used as a criterion for the high-end threshold.

RS
)\'2(1 :N_Z)\'Z(ali) (346)

al i=l

Here A, 1s the cxtrapolatcd estimate averaged over N, threshold values ay;, and Ax(ay;) 15
a value of the extrapolated estimated based on the threshold «y..

Lower and upper boundaries of the confidencc interval can be also be averaged in
the first expansion:

oW 1 V‘II OW i 1 S - 4,
)\'Iu: =_Z)‘Iz (a) AT :_Z)‘lzp(au) (3.47)
a1 i=l al il
Here 2% and A7, are lower and upper boundaries of thc confidence interval for the

averaged cxtrapolated estimate.  19"(a,) and 1% (a,) are the boundarics for the
extrapolated estimated based on the threshold ay;.

Figure 3.35 shows the result for the target levcl a,=14 m. The theoretical solution
hits almost cxactly in the middle of confidence interval.

=5
bati ¥ = = o i
Log rate of upcrossing, log(1/s)
1.10°6 __Theorellcgl
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& —— =4 Averaged
TR extrapolated
' L estimate
110 8

Figure 3.35 Level 14 m: theoretical solution and extrapolated estimate averaged for the thresholds
7.5-8.5 m. The distribution for the threshold 8.5 m was fitted with 149 points

Figure 3.36 shows the performance for all levels from a;=9 to 22 m. The break point is
20 m, which gives an upcrossing rate of 5.5x107"; this is more than enough for practical
calculations as the mean time to an cvent is about 57,000 years.

Successful application of the averaging over several thresholds for the current
numerical example does not yet prove that it will work as well for all other cases. While
it scems to bc impossible to prove, it still makes sense to try it at least on two altcrnative
data sets used earlier in this section. Figure 3.37 shows the dependence of thc
breakpoints of thcse datasets as a function of the threshold, similar to Figure 3.32. The
lowest point is about 13 m in both cases.
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Figure 3.36 Theoretical solution and extrapolated estimate averaged for the thresholds 7.5-8.5 m. T'he
distribution for the threshold 8.5 m was fitted with 149 points
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Figure 3.37 Breakpoint level (the level below which the extrapolation is still good) for the
extrapolation based on extreme value distribution vs threshold for two alternative data sets

Figure 3.38 shows behaviors of the rare solution and the complete extrapolated

estimate for ;=14 m using two alternative datasets.

These behaviors are principally

similar to the original set seen in Figure 3.33 and Figure 3.34. Quite a number of
threshold values enables the estimate “to eateh™ theoretieal solution in its confidence

interval.

Figure 3.39 shows results of the averaging technique for the two alternative
datasets. The performanee is not as dramatie as the original one, but is still usable.
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Figure 3.38 extrapolated estimate of eonditional probability that the proeess will exceed the level of
14 m if the threshold has been crossed — rare solutions (upper plots: a, b) and complete extrapolated
estimate (lower plots: e, d) for two alternative data sets for a,=14 m
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Figure 3.39 Level 14 m: theoretical solution and extrapolated estimate averaged for the set 1
thresholds 7.5-8.5 m. The distribution for the threshold 8.5 m was fitted with 145 points. For the set 2
range is 7.5-8.6 m with 146 points for the threshold 8.6 m.

Finally, Figure 3.40 compares the theoretical solution with the extrapolated
estimate averaged through a range of the thresholds. Breakpoints for the alternative
dataset lay on the levels of 15.25 m and 21.1 m respectively. Even the lowest breakpoint
corresponds to the value of the rate 2.53 1-10°® s"; while the mean time before the event is
1.25 years. Of course, it is less than the original dataset has shown, but still good enough
for 200 records 30 minutes each, as the method allowed extrapolating data from 100 hrs
to 10,000 hrs.
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Figure 3.40 Theoretical solution and extrapolated estimate averaged for the alternative data set.
Set 1: Range 7.5-8.5 m; 145points for the threshold 8.5 m
Set 2: 7.5-8.6 m: 146 points for the threshold 8.6 m

3.4.Summary

The main difficulty associated with characterizing the likelihood of a large roll
angle occurring is related to the problem of rarity. The nonlinearity of the dynamical
system deseribing large roll motions of a ship creates additional difficulties. The natural
frequency of roll of a ship changes as a function of roll amlitude. This frequency shift
makes the response significantly different for small and large-amplitude motions. These
difficulties are overcome by separating the problem into “non-rare” and “rar¢™ sub-
problems. The “non-rare” sub-problem 1s based on relatively small-amplitude motions.
Its solution provides the rate of uperossing a threshold, a boundary that separates small,
almost linear motions from moderate and large-amplitude motions, where nonlinearity 1s
significant. This threshold is the boundary between the “non-rare” and “‘rare” sub-
problems. The non-rare problem was considered in the section | of this report. Further
work 1s focused on “rare” problem.

The solution of the “rare” problem is based on the statistical properties of the data
points above the threshold. The idea 1s to use them to predict large angles, as the
influence of nonlincarity is already significant above the threshold. Among the data
points above the threshold, the peaks are of speeial interest and they can also be
considered for Poisson flow. It can also be shown that reaching a peak above the
threshold is an event equivalent to upcrossing of this threshold.
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A distribution that 1s fit to the peaks over the threshold is a conditional
distribution.  This conditional distribution describes the probability that, once the
threshold is crossed, a higher level is crossed. This constitutes the solution of the *“‘rare”
problem. The distribution may also be considered as an extreme value distribution, in
which case the maximum values from fixed length windows are used in place of the
peaks. The extreme value distribution describes the behavior of the tail of a distribution
and may therefore provide more accurate extrapolation. Averaging results obtained with
several thresholds also seem to improve the accuracy of the method.
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4. Envelope Theory

This scction examines the properties of the envelope and then considers its
application, along with upcrossing theory, as a method ot evaluation of the probability of
rare cvents.

4.1.Definition and Background

As it was demonstrated in the Section |, a violation of Poisson flow is causcd by
too many crossings of neighboring periods. This is especially pronounced when the
spectrum 1s narrow, which leads to significant grouping or clustering. Such a situation
may be typical for following and stern quartering waves when the encounter spectrum
can become very narrow. Envelope thcory may be useful in these cases. Belenky and
Breucr (2007) show an cxample of sueccessful application of the envelope for the case of
parametric roll, a process known for its narrow spectrum.

Most Naval Architecture applications dealing with irregular waves use a Fourier
presentation of a stochastie process:

N
x(r) = Zr,,,cos(w,tﬂp,) (4.1)

i=1

Here, m, 1s set of frequencies used for discretization of the given spectral density, ry, is
amplitude of the i-th component and ¢, is a phase shift for the /" component. If a process
is normal, like in the case of elevations of irregular waves, amplitudes of components arc
taken from a spectrum, while phase shifts are considered as a set of independent random
numbers with uniform distribution from 0 to 360 degrees.

The concept of the cnvelope came from envelope presentation, which is an
alternative way to describce the time history of a stochastie process:

x(1) = a(r)cos(Dd(r)) (4.2)

Here the process x(r) is presented through two other stochastic processes:
amplitude or envclope a(f) and phase ®(s). Originally the envelope presentation was
developed for a stationary normal processes (Rice, 1944, 1945); the principles it is based
upon may. however, be extendible to non-Gaussian processes as well. The role of phase
(1) is keeping the “memory” of the process; it makcs surc that the presentation (4.2)
does not alter the autocorretation function of the process x(7). The role of the envelope
(a(t)) is to ensure the variance i1s maintained, sec (Bclenky, ef a/ 2006) where an example
application of the envelope presentation is shown.

Formally, the envelope is defined through a complementary stochastic process. [t
1s ¥(¢) is defined as:




¥y = sin(o+ ) 4.3)

i=1

The stochastic processes x(7) and y(¢) are not correlated if the time 1s fixed, as the
correlation moment at the fixed time 1s zero, since the phases were shifted 90 degrees (if
the process x(f) and y(t) are normal they are also independent at the fixed time).
However, the values of the processes may be correlated if they are taken at different
instances of time. The operation of obtaining the complimentary process is known as
Hilbert Transform.

The envelope a(?) is defined as:

a(t) =+/x"+y° (4.4)

The envelope is a stochastic process with its own autocorrelation function and
distribution that differs from the distribution of x(¢) and (7).

Further considerations rely on the same numerical example of wave elevations. It
is deseribed in detail in section 1. Figure 4.1 shows the envelope along with the process,
it was derived from. The negative reflection of the envelope has been added for better
visualization. Figure 4.1 makes clear the origin of the term “envelope”. The actual
envelope and its negative reflection cover the entire process and serve as its outer
boundary.

10 x(r), alr),-alr)
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Figure 4.1 Stochastic process of wave elevations and its envelope. Negative reflection of the envelope
is added for visualization only

A closer look reveals that the envelope is not just a smooth curve that connects
the peaks of the process. It accounts for negative peaks (case A in Figure 4.1). Sometimes
the envelope has a peak when the process itself has neither negative nor positive peak
(case B in Figure 4.1). The origin of this “unclaimed” pcak of the envelope can be
clarified by plotting the complimentary process v(¢) along with the original process x(7)
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and its envelope, sec Figure 4.2. It becomes clear that the peak of the envelope can be
also caused by the peak of the complimentary process.

Moreover, it 1s possible to show that all the points of the envelope are, in tact.
peaks of the process x(¢) shifted by an angle. Consider a process z(1):

N,
2(1]) =D 1y cos(,1 + ¢, — ) (4.5)

i=l

Here v is the shift angle. Figure 4.3 shows the shifted process =z(¢) along with original
process x(7) and complimentary process y(r). Each peak of the shifted process z(r) belongs
to the envelope. This provides a graphical interpretation of the envelope and explains the
origins of its peaks.
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Figure 4.2 Origin of peaks of envelope: original stochastic process x(t) and its complimentary process
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Figure 4.3 Envelope and peaks of the shifted process
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4.2.0utline of the Theory of the Envelope

This subsection examines an outline of the basies of the theory of the envelope for
a normal process. It is assumed the process x(t) is normal and has zero mean value, but it
does not limit generality, as it is always possible to introduce a shift. Consideration
generally follows the classical text by Sveshnikov (1968).

4.2.1. Distribution of the Envelope and the Phase

The complimentary process y(¢), as the result of Hilbert transform, can also be
expressed as:

y(1) = Z Py, SIN(®, 1+ @, ) = a(t)sin(D(r)) (4.6)

=1

Assumption of normality is cxtended to thc complimentary process y(r). It is
naturally followed if Fourier presentation (4.1) is used for the original process x(f) and
uniform distribution of phases of components is assumed.

Consider a probability that the envelope takes a particular value. Taking into
account (4.4), it can be expressed in a form of the following inequality:

a< x*+y’ <a+da (4.7)

The probability of satistying the inequality (4.7) is directly related with the PDF
of the envelope f(a):

P(a LAt eyt <a +da)= f(a)da (4.8)

The probability (4.8) can be evaluated if the joint distribution of x and y is known:

f(a)da= P(a <Yx*+yt<a+ da)= ”/ (x, y)dxdy (4.9)

PO g~
agyx”+y" <atda

Here f{x,y) is joint distribution of the original process and its complimentary process. As
a normal distribution was assumed for both of them the joint distribution is expressed as:

/*( ) ] 1 -12 2".“X_\" o ' 4.10
xX,v)= exp| — > = g :
T v i-12) |72 -2\ JE 7, e

Here V., and V. are variances of the original and complimentary process, respectively; r,,
is the correlation coefficient of the original and complimentary processes:

The varianees of the original and complimentary processes are identical. Taking
into account presentation (4.1) and (4.3):
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As noted in the previous subseetion, the original and the complimentary processes
are not eorrelated, as the shift between them is 90 degrees. It can be elearly seen for the
known formula for the correlation coefficient between two processes expressed with
Fourier series:

Z),,,Los Ag, ) Z;,,,em ~{p,-0.57))=
‘“\L‘,| 1’\‘11

Z;,,, cos(0.57)=0

'\/\l'l

Here Ay, is the differenee between phase of eomponents. For the details of derivation of
this formula, see (Belenky & Sevastianov 2007) or (Belenky, er al, 2007).

Taking into account (4.11) and (4.12), the distribution (4.10) ean be simplified.

\+1“

B okl

Sflx,y)= (4.13)

|
2m L\ep(_E

Substitution of the distribution (4.13) into (4.9) and transition to polar
coordinates yields:

fla)da = JJ_/'(_Y, y)dxdy =

T
u‘v’\" v <ada

1 W 7
= ” exp - l) dxdy =
2, e 2L B

1Sy X | SR v R

a=+x"+y’ x=acos(®) (b

% . =
D = arctun('—j v =asin(®d)
X

l avda 2n 2 ] a 2
= aexp| — —| — | | dD da
2“’ } ’.\ J‘- (:‘- p[ 2 [ ""\ ]J

At the same time, eonsider f{a) as a marginal distribution of the joint distribution f{«.®)
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atda 2m

flayda= [ [f(a,®)d®da (4.15)

This joint distribution fla,®), then is expressed as:

a [if & »
D)= P
f(a,®) 2l exp( 2( )] (4.16)

The right-hand side does not contain the variable ®. It means that the variables a and ®
are independent. The PDF of a ecan be found by the integration of (4.16) by @ from 0 to
2m.

fl@)= [f(a.®)do =Viexp[—%(f, ]] (4.17)

This distribution 1s known as a Rayleigh distribution.

The distribution of the phase ean be easily found from the formula (16) using
the established faet of independence of envelope and phase:

./'(<I>)=M:L; 0<d<2n (4.18)

fla)y 2

The phase in the envelope presentation (4.2) follows unformed distribution from 0 to 2.
This eoncludes consideration of PDFs of the envelope and the phase.

4.2.2. Autocorrelation Function of the Envelope

To find autocorrelation funetion of the envelope, the joint distribution of two
values of the envelope a(r) and a(z+1) need to be obtained first. This can be done through
four-dimensional distribution of values x and y at the time instanees ¢ and +t. Consider a
system of four random variables:

U=(x(t), x(t+7), p(t), y(1 + 7)) (4.19)

These random variables are values of the original and eomplimentary stochastic
process and in two time instanees, ¢ and t+1. As proeesses x and y are normal, all four
variables have normal distributions. The processes x and y are independent; that means
that the variables x(7) and y(¢) arc independent as well as the variables x(#+t) and y(¢+1).
It does mean, however, that the variables x(¢) and y(s+7) are independent. Viee versa,
they are dependent and their correlation coefficient is expressed using formula (4.12) as:
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X)), y(x+ =—
m(x(1), y(x + 1)) 5=

X

o cos(wlr—O.Sn)— Z;,, sin{w, 1) (4.20)
i

"(Il

A similar conclusion can be reached for another “cross-pair” of the random variables

x(1+1) and y(7):

m(x(t + 1), y(x))= - Z;,,,coswr+0 Sn :—TZ;,,,sm Q) ‘r) (4.21)
v o=l &V =l

It is convenient to express these figures as:

r(r)=—m(\(1+1) \(\))-m(\(t) y(x +1))=

(422)

\II

Dependence between random variables x(¢7) and x(7+71) as well as between (1) and

v(t+1) can beexpressed through an autocorrelation function of the processes x and v,

which i the considered case 15 1dentical to the application of formula (4.12):

m(x(0), x(x + 1)) = Z;,,,cos u)'r (4.23)

\ll

m(\(t) y(x +1) Zr,,,cos u)r (4.24)

|l|

It is convenient to express these figures as:

I @&,
k(t)= m(.\'(.\'),.\'(t + r)): m{y(1), v(x + 7))= TZ% cos((olr) (4.25)
<P il
In fact &(t) 1s the normalized autocorrelation function that is the same for the processes
x(7) and »(?).

The relationship between these vanables i1s summarized with the following
covariance matrix:

I k(t) 0 r(t)
k(1) 1 -r(t)y O
Cx) =,
=% & gy 1 ko) e

r(t) 0 k(1) )

All these varnables have a normal distribution; therefore dependence between them
1s completely charactcrized by the correlation expressed by the covariance matrix (4.26).
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Next, their joint distribution is completely defined by the following 4-variate normal
distribution:

! 1
U)=—FF—= -=U'Cc'U |=
HE) (2n)21/detiCicxp( 2 J
(4.27)

4 4
if
/

1 I
N R )

Here the superscript T stands for the transpose operation. It converts a vector-column into
vector-row. C ' is an inverse covariance matrix. It is cxpressed as:

C:'U,U,J

I —-k(t) 0 -r(v)
1 —k(7) | r(1) 0

CONIT| 0 w1 ke e
~#E O k(@ !
Here:
p(r)’ =1-k(v)* —r(z)’ (4.29)
The determinant of covariance matrix is:
det(C(1)) =V (1-k(x) = r(x)’ ] =V p(2)* (4.30)

Substitution of the formulae (4.28) and (4.30) into (4.27) leads to the following
expression for the joint distribution of considered random variable:

JW)=

(x,2 + 1, + \': + 1: =2k(x,x, + 1 ¥,5) —2}‘(.\’,_}'2 +¥,x, )]

1 1
—,76 = <
AT x"[ W (431)

To avoid a bulky formula, the following nomenclature was used in formula (4.31):

x, =x(t) ; x,=x(t+7) o
n=x0); y,=y(t+1v) (4.32)

Formula (4.31) dcscribes probability density in the four-dimensional spaec with
coordinates xi, X2, vi, 2. The next step is to re-write in the polar coordinates defined as
follows:
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a=+/x"+ “\'3 x =acos(D)

v ¢ (4.33)
@ =arctan| — | v =asin(Pd)
%
The new eoordinates are:
a =a(t) ;. a,=a(t+1)
(4 34)

D =D(); O,=D(+71)

To eomplete the transition, two pairs of reetangular coordinates (x,, v;) and (x», v») are
substituted with (a), ®) and (a2, 0>). Then the expression needs to be multiplied by | a»
as the element of the area in the polar coordinates « d® da.

; a,a, S
fla,,a,,®, D)= = —exp| - —\a; +a; -
B Qv ) p’ 2.p i+ (4 35)

-2ka,a, cos(®, —PD,)-2ra,a, sin(d®, -~ ©,)))

The expression (4.35) ean be further simplitied by the substitution:
7
Y‘;’-arclan(-/-"—) (4.36)

a,a,

1 5 3
e e ORI S a, +a; —
(27{1" )' P p[ 2N ( !

=2a,a,+/1- p’ eos(®, - D, _y))

The next step is to obtain the joint distribution of a), 2. It can be done by
integration of the distribution (4.37) twice by @, and @:

aa, ¢F ‘ ] 9 .
Tl sy = ' 2 exp[— — (u' Bl —
; Ve " UJOI wp (4.38)

—2a,a,+/1 - p* cos(P, — D, —y)}l'(l),a'(l)1

flayay 0, )=
(4.37)

The integration ean be completed:

. . 2 (ami=p*
fla,a) = exp ~ A% |y | AN (4.39)
PP kP




Here Iy 1s the zero-order modified Bessel function of the first kind (Abramowitz and
Stegun 1972).

Finally, the autoeorrelation funetion ean be obtained from the PDF (4.39) using its
definition:

R,(v)= _Hf(a, .a,a, —m_ Xa, -m)dada, (4.40)

00

Here m, 1s a mean value of the envelope. As it was shown that the envelope follows the
Rayleigh distribution, the mean value is known:

]]da = Jo.5V, (4.41)

]azex o a
L’l 0 p 2 L,\

The integration results in the following formula for the autoeorrelation function:

m, = Iaf (a)da =
0

R, (v)=V (2E(1- p*)- p’K(1 - p*)-0.57) (4.42)

Here E and K are elliptie integrals of the first and the seeond kind:

E(x)= ¢ Kikdi= l1-x-sin’zd= 4.43
& I\/l—,\ -sin’ '[ { )

An example of the calculation of the autocorrelation function of the envelope, as well as
its comparison with a statistieal estimate, is given in the subsection below.

4.2.3. Distribution of the Derivative of the Envelope

The theory of the envelope also offers the PDF of the derivative of the envelope.
This result may be important for an application of the uperossing theory to the envelope.

To find the distribution of the derivative of the envelope, the joint distribution of
the envelope and its derivative need to be found first and then integrated from zero to
infinity by the value of the envelope:

f(@) = [f(a,a)da (4.44)

The joint distribution of the envelope and its derivative ean be derived from the joint
distribution of two values of the envelope (4.39). This problem can be elassified as
multivariate probability transformation, when the distribution of one random veetor is
derived from the distribution of the other random veetor. It also implies that these random
vectors are related to the deterministie vector valued function.
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(“(’)‘ ._["7(’) ,al] _(4q »
== D =i = ’
zz(r)J at+n) [(-,l [(,: (4.45)

Generally, a derivative is defined as a limit:

i : t —a(t . 3 y
a(t) = l]l]}—a( el or a, = lmg o (4.46)
T T T T

Formula (4.46) represents a eomponent of a veetor-valued determmistic function of a
random vector; the othcr component is obvious:

[1)s

lim—
=0 T

ol a,
[']= a, - a, (4.47)
a,

Sinee the first eomponent of the funetion (4.47) maps a; into itself and does not depend
on T, the symbol of limit can be applied to the entire function:

al\ ‘ “’l \
| =lim a:—a,J (4.48)

Ep MY
T

Assume that t is small. Then introduce approximation for the function (4.48):

a a B
E( l}:zt( I]Z a, —aq, (#:49)
a, a,
5 2 o

The formulation of the problem of multivariate probability transtormation is
eompleted. Its solution i1s well-known from the general theory of probability (see. for
example, Goodman, 1985):

£ (@) = P £ (a0, ¥ (0. a,)) (4.50)

Here the veetor valued funetion W is an inverse to the vector valued function =" and J
stands for the determinant of Jacobean matrix.
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=¥ . |= , (4.51)
a, a @ F=aT

The second component of thc inverse function (4.51) was formally derived from the
second component of (4.49):

. s a, —a
a, = 2,(a,.a,) = +—

& a,=a,+a7T= ‘*’;(a,,d,) (4.52)
T

However, it is also follows from the assumption that t is small:
a(t+t)=a(t)+ta(t) or a,=a, +14, (4.53)
The determinant of the Jacobean matrix of the inverse function is expressed as:

8 la a0 BT (a8

. oa oa 1 0
JW)=def| 5D L = det = 4.
(¥7)=de ¥ (a,a) O¥i(a,d) C[l TJ ’ (4.5
oa, a,

Substitution of (4.54) and (4.51) into (4.50) lead to the following expression for the
approximatc joint distribution:

f(a,a)=1f(a,.a, +a7) (4.55)

The exact distribution of the envelope and its derivative is actually a limit of
(4.55) when 1 tends to zero:

fla,a)=limf"(a,,a) = lim tf(a,,a,+a7) (4.56)

Substitution of (4.39) into (4.56) yields (index | may be dropped now):

ta(a+ 1a) exp[ Tl o R jl [a(a +1a)1-p° ) (4.57)
- 0

a,a)=hm - - ‘
A= Vel 2V.p Vp

v L ¢

To carry out the limit transition in the formula (4.57), p needs to be considered in
more detail as it 1s a function of t, see formula (4.29), repeated here for convenience:

132



[)(‘[)‘ = l=k(z)? =r(1)*

The function k(1) 1s a normalized autocorrelation function. It was defined by the
formula (4.25), which is based on discretization of spectrum with frequency set o,.
i=1,...N,. Formally, it is the cosine Fourier transform of the spectral density s():

7

k(t)= Ll _[s((o)cos((orki(o (4.58)

v 0

The function #(t) is a normalized cross-corrclation function. It was defined by
formula (4.22) based on the same discretization. It is a result of sine Fourter transform of’
the spectral density:

i LL J..s'((o)sin((ot.)d(o (4.59)

v 0

Figure 4.4 shows the function p(t) along with normalized autocorrelation function
k(t) and normalizcd cross-corrclation function »(1) calculated for the numerical example.

s

o)

x’\

0.51
HT)
) e e

e
L 7 /\ — , ; =
0 \Ln/ W0~——""30" 40 50 60
S

i k(1)

0.5

_]JL
Figure 4.4 Function p, normalized auto- and cross-correlation functions

As 1t ean be scen from Figure 4.4 the function p(1) tends to zero with the deerease of time
duration t. To describe behavior of this function near zero, it is convenient to cxpand it
into the Taylor series about the zcro point (actually, then it is Maclaurin serics):

: S R |
p(t) = p(O)‘+Fp(O)'r+;p(O)‘t' + ... (4.60)

Consider each term of (4.60):




p(0)’ =1-k(0) -r(0)" =1-1-0=0 (4.61)
= 2 1 2 2] 2 o
POy =<1k r@?) = 2k@k i), (4.62)
=0
. 3 d 3 .
p(0)* = d—(—2k<r>k(r>—2r(r>r(r>) -
T =0 (4.63)
= — 2k(0) (1) + k(1) + (D)) + (1)} )| )
Values of the auto- and cross corrclation at T = 0 arc expressed as:
k(O)y=1; r(0)=0 (4.64)
Derivatives of the auto- and cross-correlation functions are:
k(1) = LL’ Is((o)(osin(mr)dm . k(t) = _Ll’ Is((o)(o: cos(mt)dm (4.65)
0 0
(1) = _LL’ J-s((o)(ocos((o'r)a’m L HlE) = _VL J-s((o)(u2 sin(m‘r)d(o (4.66)
T 0 v (
The values of these derivatives at T = 0 are expressed as:
k(0) = I—l— Is((o)(osin((o‘r = O)d(o =i (4.67)
x 0
F(0) = _LL’ Is((o)(ocos((o‘r — O)d(o = —-Ll— Is((o)(od(o = ®, (4.68)

X0 X0

The value — #(0) is the mean frequency m; as dctermined from the spectral density.

I.('(O) = —PL’ J-s((u)oo2 cos((m: = O)J(o = -LL’ J-s((o)(ozdm = —(n)i (4.69)
X 0

X0

The quantity —k(0) has a mcaning of the second moment of the spectral area,

- b : 2
normalized by the variance. Its usual nomenclature is 3.
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F0)y=—— Jv(w)w em((or = O)dm = (4.70)

r 0
Formulae (4.61) through (4.70) allow us to express the expansion (4.61) near T = 0 as:

p(t)2 :O—I(k(O)l\:(O)+r(0)i‘(0))—
— 2 (k(0)K(0) + A(0) + r(0)F(0) + #(0) )+ .. = (4.71)
= —T(l-O—O'(OI)—TZ(—l OR —0—0+(of)z tz((oi —(u,:)

The above derivation completed with formula (4.71) allows making an important
conclusion of the behavior of the function p(t) near t = 0.

-

lim p(1)° = lim t:((oi —wf) (4.72)
10 -0

Consider behavior of the argument of the Bessel function in (4.57) ncar t = 0:

I [a(a+m),/l—p(t J [ u+ra),/l—ti(o, (o,i
m
T

-l

p(t)” V, *((ow m,)
(473)

=lim
0

[l a’ + aa \

T

Using the known quality of the modified Bessel function of the first kind:

l
hml o{X) = Jz—eXP(\) (4 74)
T

This allows substituting the Bcessel function with its approximation in the
formula (4.57):

Py =i P8 =) POV,

o L'D(T) \/Zna(a+ra),/l—p(r
cxp(_ '('1”2 ]exp(_a(a+dr)Je [a(u+m)\/l—p(r

2V p(t)’ V.p(t)’ V.p(t)

)

Substitution of the approximation (4.71) for the function p(t) into the equation (4.75)
allows completing the evaluation of the limit:
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f(a d)=ie><p(— < ] ! exr{— - ] 4.76
o Ve 2V, \/2nK.(w§—wf) 2Vx(‘”§_(9|2) =9

The structure of formula (4.76) reveals independence of the envelope and its
derivative (see formula (4.17)). This is, actually, an expected result. Since the process x is
stationary, its envelope also can be cxpected to be stationary; and the stationary process 1s
independent of its derivative.

fa.a)= f(a)f(a) (4.77)

Finally the distribution of thc derivative is cxpressed as:

o 1 - a’
f((l) I ‘\/27.[1/‘ (wg B (Dlz ) exp[ 2V‘ (w_; = wlz jj (478)

It 1s a normal distribution with zero mean and the following variance:
V, =V (0] -o}) (4.79)

4.2.4. Numerical Example

The envelope i1s a stochastic process; thcreforc it makes sense to start its
numerical exploration by comparing its statistical estimate of the autocorrelation function
with its theoretical counterpart (4.42).

The values of the envelope were computed for each time step with formula (4.4).
The estimate of its mean value is expressed as:

= NN ;;a”. (4.80)

Calculation of the estimate of the autocorrelation function may encounter
significant difficulties for larger values of time due to insufficient data. Averaging of the
estimate over the records alleviates this problem (Belenky er a/ 2007):

* 1 '\R ] .N A - *
R, =— ) ——) (a,—-m,)a,., —m,)
NN % “ (4.81)

i=lL.N; j=1L.Ng; k=1.N-I

Figure 4.5 shows theoretical autocorrelation function of the envelope (4.42) and
its statistical estimate (4.81). Although in-depth statistical analysis was not performed, it
1s clear from this figure that both the shape of the autocorrelation function and its time of
decay are fairly close.
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Figure 4.5 Normalized autocorrelation functions of the envelope

As an ultimate purpose of using the envelope is upcrossing, it makes sense to
check the distribution of the envclope and its derivative. This can be done using Pearson
chi-squarc goodncss-of-fit test. However, in order to usc this test, all the points included
in thc sample must represent independent data. The points «; are dependent. as the
process of the envelope has a ccrtain memory represented by the autocorrelation function
shown in Figure 4.5. To provide the goodness-of-fit test with independent data, Belenky
et al (2007) used a skipping procedure, with the time interval sufficient for the
autocorrelation function to decay. In this case it may be about 30 scconds, which
corresponds to 60 steps. So only one point over 60 steps is included in the sample.

Figure 4.6 and Figure 4.7 show the distributions of the envelope and its
denivative, respectively. The results of Pearson chi-square goodness-of-fit test were
included in these figures. As it can be seen the test was passed in both cases.

The goodness-of-fit test does not rcject the theoretical distributions. It means that
the theory of envelope was correctly interpreted and applied in this case.

025 TPDF
Pearson chi-square goodness-of-fil test
BiEx ¥7=47.0 d=42 P(x*.d)=0.274
027 ks
:H — g
"«_" B
0157 2 I 7*
A Ky
0.1t | b,
il q
[ | ]
0.054 "N
| | i T
111 | " | [ | ‘h.h"n-r-m dyifll
0 2 4 6 8 10 12

Figure 4.6 Distribution of the envelope
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Figure 4.7 Distribution of the derivative of the envelope

4.3.Application of the Theory of Upcrossing to the Envelope

To obtain the theoretical upcrossing rate, distributions of the envelope and its
derivative need to bc substituted into the general formula for the upcrossing rate of a
stationary process:

= f(a=b) fa (a)di =

=iexp(— b I xp(— a jdd=
V. 2, ). sz g ®?) 2 (0 -?)

. (4.82)

V. 2V, 2n W [0l - o) 9

®; — ] b
=b exp| —-—
2nV. 2V

Here, b is the level of crossing.

Evaluation of the statistical estimate of the upcrossing rate does not differ from
the procedure described in Section 1. Numerical results are shown in Figure 4.8, the
theoretical value and statistical estimates agree as the theoretical value is inside of the
confidence interval.
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Figure 4.8 Theoretical and statistical rate of upcrossing of the envelope. Level of crossing 5=9 m,
total number of upcrossing is 302

Following the method developed in section 1, applicability of Poisson flow has
been tested for 9 m erossing level, see Figure 4.9. As seen from this figure, the
observation of uperossing of the envelope does not reject Poisson distribution.
Caleulations for different levels are summarized in Table 7. As seen from this table, the
uperossing of the envelope stops following the Poisson flow somewhere between the
levels of 7 and 7.5 m. This is actually higher than the process itself. As it was shown in
the seetion 1, the Poisson flow lost applieability between the levels 5.25 and 5 m.

e ©66 Theoretical mass probability function y'=1.629 d=3 P(y".d)= 0.653
| ©66 Based on Average Number per Unit of Time x°=1.63 d=2 P(y /) 0443
0.6 Crossing level 9 m
Total 302 upcrssings
Number of time windows per record NV, =5
0.4+ Duration of time window 7,=360 s
Volume of sample 1000
\ Estimate of mean value m" =().302
X Estimate of variance 1'=2911
0.2+ ™ Ralamses ¥ 0575
\\
: —— — k,
0 1 2 3 4

Figure 4.9. Probability mass function of number of upcrossing of the envelope during time window

Obviously using the envelope in this ease does not help with application of
Poisson flow for the lower levels. However, the numerical example used so far
considered waves derived from a Bretshneider speetrum. It is a model for fully developed
waves in unrestriected waters and the speetrum is not exaetly narrow. This situation
changes eompletely when the eneounter speetrum in following or sterm-quartering waves
1s considered. This is the content of the next subseetion.
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Table 7. Evaluation of applicability of Poisson flow for the upcrossing by the envelope

N, m/V Nesiz Pearson chi-square test for Poisson distribution based on

E' E é’o Formula (83) Averaged number of crossing

% E z 2 2 2 %

K Z 5 X d POCd) | x d Py
11 31 | 0.958 3 0.8147 |2 0.665 0.5251 1 0.469
10 108 | 1.1 4 4210 3, 0.2396 | 3.239 2 0.198
9 302 5 1.0375 | 4 1.629 3 0.653 1.63 2 0.443
8 787 10 1.047 4 1.6636 | 3 0.645 1.382 2 0.501
7.5 1224 25 1ol | 4 0.6589 | 3 0.8828 | 0.301 2 0.860%
7 1799 25 1.0683 | 4 9.4395 | 3 0.024 9.0013 | 2 0.0111
6.75 2210 25 1.1008 4 154754 | 3 0.0015 15.8483 | 2 0.0004
6.5 2632 25 1.135 4 25.1708 | 3 1.42E-5 | 25.9098 | 2 2.36E-5
S 6121 40 1.5325 | 4 55498 |3 0 561.14 | 2 0

4.4. Effect of Speed and Wave Direction

4.4.1. Encounter Spectrum of Waves

The wave excitation acting on a ship depends on speed and wave direction, even
if the consideration is limited by Fourde-Krylov forces and moments. The effect is caused
by the relative motion of thc wave and the ship. It is a particular case of the Doppler
effect, when the frequency is increasing when thc source of a signal and a rccipient of a
signal move towards each other and decreasing of frequency when they move away from
each other. This effect is known in Naval Architecture under the term of encounter
spectrum that becomes wider in the head and oblique waves and narrower in the
following and stern quartering seas.

The calculation of the encounter spectrum and its effect on ship motions are
described in details by Kobylinski and Kastner (2003). Calculation of the encountcr
spectral density s, can be carried out using the series of formulae below:

©, = (o—&VS cos P (4.83)
4

Here . is the frequency of encounter, ® is the true wave frequency 3 is the wave
heading angle and Vsthe speed of the ship (in m/s, if S.1. is used).
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50+ 5,(0,)+5.,(0,) i ©, <—2—
i 4V, cosB|
if cos(B)>0
2 g
0 0, 2—— ’
gl@)= voe 4V cosB (4.84)

| s.(w,)= ‘g('/") if cos(B)<0

I—ZI'-VS. cosf
b4

With the following expression for the parameters:

{7 e gl—,/D(m()
" s ey e o

s (m,)= ,
f- 9L s 2, cosP
g
) e
o Ly L 2V, cosP (4.85)
1-2"2 ¥, cosP s
g
19 1+,/D
Sal®,) = sUi) = g+—'(m)

l—2£V5 cosf 2V cosp
g

W, ,, n. e & 4 .
D(w,)=1-4=2V, cosP; Dl(wt)—l+4g Vi cosp (4.86)

Figure 4.10 shows the encounter spectrum calculation for the numerical example
(sce subsection 1.2.3) calculated with formulae ((4.83)-(4.86)) for pure following waves
(P=0) and speed of 15 knots. The dramatic effect of speed and wave direction 1s very
vivid.

These calculations are much simpler for the case when a spectrum 1s already
presented mn amplitude and the frequency of components; the new set of frequencies
consists of absolute values of the encounter frequencies (4.83):

Ny
() = Zru, COS(I(D(,,II +(p,) (4.87)
i=|
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Figure 4.10 Encounter (red) and true (blue) spectra of wave for pure following waves (B=0) and
speed of 15 knots

4.4.2. Time History and the Envelope

The time history of the 19" record is shown in Figure 4.11. The upper part (a) of
the figure shows the original process “recorded” by a fixed “gauge”. The lower part (b)
is “recorded” by a “gaugc” moving in pure following waves (f=0") with a speed of 15
knots. There is a significant visual difference between these two time histories. The effect
of speed and direction leads to appearance of groups or clusters. These clusters may
create problems with Poisson flow. If there is one upcrossing, the next period is very
likely to have one too. This breaks the requirement of the independence of these events as
the autocorrelation function still has significant numbers after one period.

At the same time the autocorrelation function decays at a significantly slower
pace: compare Figure 4.12 with a similar figure from section 1. The autocorrelation
function in Figure 4.12 keeps some values even at the end of the record. It is a result of
the “moving” gauge; there may be a component that moves with celerity very close to the
“gauge”,. Itmay take a very long time (up to eternity) for such a component to pass the
“gauge”, and therefore its influence can be felt for such long time. As a result, it is not
obvious, how long it takes for the autocorrelation to die out; if such a parameter is still
rcquired, it can be set based on practical considcration such as “when the autocorrelation
function peaks become less than 10%”. For this example it takes 400 seconds.

Figure 4.13 shows the same record 19 along with its envelope and makes visual
yet another effect of speed and direction: the envelope becomes a slowly changing
process in comparison with the wave elevations even “recorded” by the moving “gauge”.
This effect is actually expected, as the spectrum becomes narrow- banded.
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Figure 4.11 Time history of the record 19 of the numerical example wave for zero speed (a) and for
pure following waves (8=0) and speed of 15 knots (b)
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Figure 4.12 Ensemble-averaged normalized autocorrelation function, evaluated for the entire length
of a record (a) and zoomed out in the first 200 seconds (b) for the process of wave elevations recorded
from a “gauge” moving in following seas with the speed of 15 knots
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Figure 4.13 Time history of the record 19 of the numerical example wave for pure following waves
(B=0) and speed of 15 knots with the envelope. The zoomed in fragment shows how the envelope
becomes slowly changing process.

4.4.3. Applicability of Poisson Flow

The most dramatic effcct the speed and heading i1s on the applicability of Poisson
flow. As it was noted above, string clustering of pcriods Icads to similar clustering of
upcrossings that violates the independence requirement and rcnders Poisson flow
inapplicable. Figure 4.14 shows distribution of the time interval between the upcrossings.
As expected none of the hypotheses is supported by the data. The histogram docs not
resemble exponential distribution at all. The first bin is much taller than the other bins,
showing that the distribution is dominated by the time interval closc to the mean
encounter period (22 s). These calculations werc done for the crossing level of 7.5 m
where without the influence of speed and heading, the applicability of the Poisson flow
did not raise any doubts, sce Figure 1.21.

The direct test of the applicability of Poisson flow (Figurc 4.15) also rejects the
hypothesis. This distribution is also dominated by the first bin, corresponding to zero
number of upcrossing during the time window. The height of the sccond bin is almost
equal to the third and the fourth. It means that the number of cases when one, two, or
three crossings are almost equal. In the case of Poisson distribution they arc expected to
decrease with the number of crossings.
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Figure 4.14 Distribution of time intervals between upcrossing for pure following waves speed 15
knots, level of crossing 7.5 m

These calculations were carried out systematically for the crossing level ranging
from 11 m down to 5.5 m and compared with the similar calculation for the envelope.
The results are summarized in Table 8. There was no level where the Poisson flow could
be applied to the process of wave elevations recorded from a “'gauge™ moving in the
following seas with the speed of 15 knots.

At the same time, applicability of the Poisson flow to the envelope is easily
achievable and 1t is good all the way until the level between 6.25 and 6.5 m. This 1s very
close to the result obtained in scction 1 for the wave elevation “recorded” by a fixed
“gauge”. Therefore the envelope can be used for detecting upcrossing events when the
spectrum is narrow and Poisson flow cannot be applied direetly to the process.

I—-
©6©  Theoretical mass probability funetion x*=5321 d=6 P(x".d)= 0
0.8 ©06 Based on Average Number per Unit of Time %’=6670 d=5 I’()(.,cl) 0
>  Based on Average Time between Crossings 3°=642 d=5 P(xz.d) 0.
©6© Based on Average Censored Time before 1st Crossing x =4007 d=5 P(x".d)- 0
0.671 \ ¥ Based on Average Uncensored Time before 15t Crossing y°=11384 d=5 P(x" .y 0
. Crossing level 7.5 m
Total 420, 147 reeords had at least one crossings
0.41 Number of time windows per reeord N, =10
Duration of time window T;=180 s
Volume of sample 2000
0.2+ Estimate of mean valuc.mk '=0.21
' Estimate of varianee V; =0.4041
Ratio m "/ ¥,'=0.5197
+ -~ 2 4 k
0 2 4 6

Figure 4.15 Probability mass function of number of upcrossing during time window for pure
following waves speed 15 knots
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Table 8. Applicability of Poisson flow for the case of following waves with 15 knots: the process vs. its

envelope

level

Wave clevations

The envelo

DC

. - | 52 A No, [F;Zz:rson chi-squarc < | mei R [Pccgztirson chi-square
g 2 3 7 E 2 3 3
2 g X Py ) S g % Pi.d)
11 6 1 0.6 3 34.23 3.6879E-8 | 5 1 1.02 2 0.256 | 0.8798
10 24 | 0.61 3 49.49 1.795E-11 16 ] 1.82 D 1:721 04231
9 75 | 0.56 5 56.76 1.386E-11 | 55 1 1.097 3 2.218 | 0.6958
8 247 3 0469 | 7 611.89 | 0 168 1 1.1538 | 5 1.997 | 0.92
TS 420 3 0.45 7} 69541 | 0 262 7) 1.0522 | 5 1.418 | 0.9647
7 683 10 0488 | 7 4155.1 | 0 373 3 1079 | 5 3.794 | 0.7045
6.75 854 10 04902 | 7 38790 | 0 459 4 RS ES 5.540 | 04766
6.5 1044 | 10 04874 | 7 24473 | 0 542 4 1.131 5 6.214 | 0.3997
6.25 1296 | 15 0.539 | 7 12274 | 0 647 4 1.1463 | 5 7.445 | 0.2817
6 {7 e 1) 0.5305 | 7 12200 | O 740 4 1.19 5 13.32 | 0.0383
Sk 1894 | 15 0.5312 | 7 12217 | 0 862 4 1.368 S 36978 | 1.7781E-6
5.5 2284 | 15 0.5407 | 7 11219 | 0 992 4 1.432 S 43.539 | 9.1214E-8

4.5. The Envelope Based on Peaks

4.5.1. Appearance and Distribution for Zero-Speed Case

As it was shown earlier in this section, the peaks of the envelope do not
necessarily correspond to the peak of the real process. It can be seen in Figurc 4.2 and
Figure 4.3. Thus the effect 1s much less pronounced when the spectrum 1s narrow like in
the case of waves “recorded” by a “gauge” moving in the same direction (pure following

waves) with the speed of 15 knots, see Figure 4.13.

Considcr an approximation for the envelope that does not produce artificial peaks;
each upcrossing of the level then must correspond to at least on upcrossing by the process
itself. Such an approximation can be achieved by a piecewise linear function using
absolute values of peaks of the process as nodes. Figure 4.16 shows this approximation
along with the true envelope, with a zoomed in picture shown in Figure 4.17. As 1t can be

seen from Figure 4.17, the true envelope oscillates about piecewise lincar approximation.
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Figure 4.16 Peak-based or piece linear approximation of the envelope; shown for the record # 19;
true envelope is shown with the dotted line. The wave is “recorder” from a fixed point.
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Figure 4.17. Zoomed in peak-based or piece linear approximation of the envelope; shown for the
record # 19; true envelope is shown with the dashed line. The wave is “recorder™ from a fixed point

Distribution of the peak-based envelope is shown in Figure 4.18. The current
value of the peak-based envelope is calculated linearly between the nodes. Comparing the
histogram with the thcorctical Rayleigh distribution, one can find visual similarity.
However, the Pearson chi-square goodness of fit test does not support this hypothesis.
Numerical disruptions caused by linear interpolation seem to be statistically significant in
this case.

03T poE
Pearson chi-square goodness-of-fit test
e e 1’=116.2 d=43 P(x’.d)= 1.1966E-8
021 T e
/o 'Q
0.171
7 | :
n o a*,m
L T M i L) -hr-l—‘__{_ ‘:
0 2 4 6 8 10 12

Figure 4.18 Distribution of the peak-based envelope for the zero-speed case. SKip 30 seconds

Calculation of the distribution of the derivatives was carried out as follows. The
cubic spline with free ends was fit to run through the peaks of the process
(Forsythe, et al 1977):
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y=y, +b(x-x)+e(x-x, )2 +d, (x-x, ) (4.88)

Here (x; ;) are coordinates of the nodes, b;, ¢;, d; are spline eoefficients. Onee the spline
was fitted, the derivative ean be expressed as:

v =b +2c,(x—x,)+3d(x-x,) (4.89)
The values of the derivative in each node simply are:
y' =b, (4.90)

The values of the derivative outside of the nodes were ealeulated with linear
interpolation at each time step. The distribution of the derivatives of the peak-based
envelope is shown in Figure 4.19. Theoretieal distribution (4.78) 1s not supported by the
Pearson chi-square goodness of fit test. Visually, however, the distribution seems to be
normal but would be characterized by significantly less variance.
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Figure 4.19 Distribution of the derivatives peak-based envelope for the zero-speed case. Skip 30
seconds

Piecewise linear approximation of the envelope further refereed as a peak-based
envelope allows us to avoid artificial peaks that could be found in the true envelope.
Every peak of this approximated envelope corresponds to the uperossing of the level by
the original process. However, in the case of zero-speed, the numerical disruptions
introduced by the approximation lead to a deviation of the distribution of the peak-based
envelope and its derivative from the theoretical PDFs.

4.5.2. Appearance and Distribution the Peak-Based Envelope for Narrow
Spectrum

For the proeess of encounter waves described by the speetrum in Figure 4.10, the
appearance of the peak-based envelope is shown in Figure 4.20. The peak-base envelope
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becomcs visually mdistinguishable from the true envelope. The zoomed-in image in
Figurc 4.21 still shows a very small difference between thc two cnvclopes. Actually this
1s an expected result. Once the spectrum 1s narrow, the envelope becomes a slowly
changing curve in comparison with the original process. Curvature of the truc cnvclope
dccreases, therefore accuracy of its approximation with the broken linc increases. Figure
4.22 and Figure 4.23 show the distribution of the values of the pcak-based envelope and
its derivative. Both figures were calculated in the same way as in the previous case with
zero-speed. Skip time was 140 seconds as the autocorrelation in following waves dies out
slower (see Figure 4.12). As it could be expected both histogram support theoretical
distributions.

As 1t has been seen from the above considcrations the peak-based envelope
rcpresents a much better approximation for the case of the narrow spectrum in
comparison with the case of zero-speed.
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Figure 4.20 Peak-based or pieee linear approximation of the envelope; shown for the record # 19;
true envelope is shown with the dotted line. The wave is “recorded” by the “gauge” moving with the
waves (pure following seas) with the speed 15 knots
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Figure 4.21 Zoomed in peak-based or pieee linear approximation of the envelope; shown for the
reeord # 19; true envelope is shown with the dashed line. The wave is “recorded” by the “gauge”
moving with the waves (pure following seas) with the speed 15 knots
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Figure 4.22 Distribution of the peak-based envelope for the following wave case and speed of 15
knots; skip 140 seconds
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Figure 4.23 Distribution of the derivative of the peak-based envelope for the following wave case and
speed of 15 knots; skip 140 seconds

4.5.3. Upcrossings of Peak-Based Envelope

Statistical estimates for the rate of upcrossings of the peak-based envelope are
shown in Figure 4.24 for both zcro-speed (a) and the following wave cases (b). The
confidence interval for the estimates was evaluatcd assuming binomial distribution (sec
subsection 1.2.2). For the zero-speed case, the estimate of the upcrossing rate does not
contain theoretical values inside thc confidencc interval. Similar to the results with
distributions (see Figure 4.18 and Figure 4.19), numerical disturbances introduced by the
linear interpolation caused the observed diffcrence. Following the same tcndency,
upcrossing rates of the true envelope and pcak-based envclope for the following wave,
15-knots case are statistically identical.

150



a) b)
o e SRR e 0.0008
0.003 I'heoretical ~ o TR (e
77| value Feae I Theoretical Peak-
envelope 0.0006[ L 2jue ” R
rue ase
Peak- T e .
0.002 bacod envelope envelope
0.0004
envelope
0.00
L 0.0002

0 0

Figure 4.24 Theoretical and statistical rate of upcrossings of the true and peak-based envelopes.
Level of crossing 5=7.5 m, zero speed case (a); following waves with speed 15 knots (b)

Signifieant statistical differenee between the theoretical upcrossing rate of the true
envelope and statistieal estimate of the uperossing rate of the peak-based envelope also
reflect the statistical signifieance of the artificial peaks of a true envelope.

Nevertheless, these numerieal disturbances did not much aftect the Poisson
character of upcrossings. The distribution of the number of upcrossings during a given
time window remains Poisson for both considered cases of uperossing of the peak-based
envelope, see Figure 4.25.

Table 9 eontains results of ealeulations for systematieally changing the crossing
level to see where applieability of Poisson flow breaks down for the peak-based
envelope. These ealeulations were earried out for both cases: zero-speed and following
waves / 15 knots (narrow spectrum). Histograms were compared with the probability
mass function caleulated with the staustical rate of upcrossing, as the theoretical
distribution 1s no longer applicable for the zero-speed case. Using the level of
significance of 0.05, one ean see that the boundary of applicability of Poisson tlow lays
somewhere between 7 and 7.5 m for the zero-speed case and between 6 and 6.25 m for
the following wave ease. These number are essentially are the same for the true envelope.
see Table 7 for the zero-speed case and Table 8 for following wave case. Thick lines are
used in these tables to show the boundary applicability.

Comparing the number of upcrossings for the true and peak-based envelope, the
significant difference existing for the zero-speed ecase could be expected, as numerical
discrepancies were signifieant enough to ehange the distribution. The difterence in the
number of uperossings for the following sea ease is much less, but the numbers are not
identical, despite that there were no visual differenees in the appearanee of peak-based
and true envelope for the following sea ease.
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Figure 4.25 Probability mass function of number of upcrossing during time window of the peak-
based envelope for zero speed case (a) and pure following waves speed 15 knots (b); crossing level

7.5 m

Table 9. Applicability of Poisson flow for upcrossing of peak-based envelope

level Zero-speed case Following waves 15 knots
s |~ it | Mo I’earson chi-square W U Pfarson chi-square
= £ est = 5 test
2.5 8.8
£l iz PO ) E 2 4 P(x’ )
Z 3 7 o
11 20 1 1.05 2 0.21 - 5 1 1.021 2 3.1E-3 | -
10 83 1 1.079 | 4 1.89 0.39 16 1 1.082 |2 0.1 -
9 243 | 4 1.059 | 4 241 0.30 53 ] 1.077 | 3 0.18 0.6749
8 620 | 8 1.073 | 4 2.85 0.245 170 2 1.036 | 4 1.0356 | 0.7209
/5] 1019 | 8 1.056 | 5 1.87 0.60 271 2 15075 [ 85 1.76 0.6247
7 1520 { 8 1.2 5 19.93 | 0.0002 387 4 1.11 5 5.89 0.1172
6.75 1841 | 20 lisilil 5 19.13 0.0003 463 B} leili2S 5 6.78 0.0791
6.5 2217 | 20 LS S 32.98 | 3.2547E-7 | 550 4 1.126 |5 4.71 0.1946
6.25 2695 | 20 1.196 |5 54.82 | 7.504E-12 | 659 4 1.159 |5 6.54 0.0882
6 3131 | 20 1.2621 | 5 9278 |0 750 4 1.199 {5 10.3 0.0162
5.75 3655 | 25 1348 |5 189.78 [ 0 873 4 1.401 |5 38.37 | 2.3558E-8
5.5 4183 | 25 1.4093 | 5 2430 |0 1014 | S 1403 |5 44.03 | 1.4892E-9
4.6.Summary

any type of distribution.

Envelope theory describes the presentation of a stationary stochastic process via
two other stationary stochastic processes: the amplitude and phase of the envelope. Most
of the theoretical results of envelope theory are applicable only for a normal process;
however some principles of envelope theory can be used for the stationary process with
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The envelope contains the absolute valucs of all of the peaks of the oniginal
process. The peaks of the envelope, however, do not necessarily belong to the original
proccss (artificial peaks).

A portion of cnvelope thcory was reviewed here, including the marginal
distnbutions of amplitude (Rayleigh) and phase (uniform distnibution), the
autocorrelation function of the envelope, and the distribution of the derivative of the
cnvclope (normal). Numerical examples demonstrated successful reproduction of the
theoretical results.

Treating the envelope as a stationary process allows the application of the
upcrossing theory. It is possible to obtain the closed-form solution for the upcrossing rate
of the envelope if the original process is normal. This result was verified numerically.

Upcrossings of the envelope follow Poisson flow, if the crossing level is high
enough and upcrossings can be treated as independent random events.

The spectral bandwidth of the process has a significant influcnce on the envelope.
If the spectrum is narrow, the envelope becomes a slowly changing function in
comparison with the original process. It was demonstrated with another numerical
example of encountered waves; the wavc elcvations were virtually “recorded™ by a “wave
probe” moving in the same direction as the waves (pure following seas) with a speed of
15 knots.

It was shown that for the encountered waves Poisson tflow is no longer applicable.
Due to significant clustcring or grouping, all of the upcrossings become dependent on
each other.

A pieccwise linear approximation of the cnvelopc was considered (the peak-
based envelope). The approximation contains only actual peaks of the process and all
other points are calculated by linear interpolation between peaks.

Numerical discrepancies introduced by such approximations lead to the
inapplicability of the theorctical solution for the distribution and upcrossing rates for the
envelope in the original wave example (zero-speed case). However, all theoretical results
werce applicable for the following wave, 15-knots casc.

The applicability of Poison flow was not affected by thc approximation.
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5. Envelope Peaks over the Threshold

This seetion deseribes a method of statistical extrapolation using probabilistic
properties of the peaks of the envelope exceeding a given threshold.

5.1. Both-Sides Crossings
5.1.1. Large Roll Event as Both-Sides Crossing

Partial stability failure in the form of large roll event is equally dangerous on
either side of a ship. Therefore, a random event of uperossing is not yet a ecomplete model
of partial stability failure. A complete model of the partial stability failure should include
both uperossing of a speeified level on the positive side and downerossing of the
specified level on the negative side. This random event ean be written as:

X =((0() < a)N (D@ + dr) = a)U((d() > b)N(D(7 + dt) < b)) (5.1)

Here, X is a random event assoeiated with partial stability failure; a i1s a positive level of

cxeeedanee and b is negative level of exeeedanee. Obviously, if the mean value of roll is
zero then requirements are the same for the both sides:

if(m(®)=0)=a=-b (5.2)

Consider a probability of both-sides erossing in a partieular instant of time 7. As 1t
is known from upcrossing theory (and has been demonstrated carlier in this report) this
probability is infinitely small:

dP(X) = P(((d(r) < a)N (o +dry = a DU ((d(1) > bIN(0(1 + dr) < b))) (5.3)
The roll proeess is single-valued (has only onc value at the same instant of time),

therefore it eannot eross two distinet levels simultaneously and the events of upcrossing
of the level @ and downerossing the level b at the time instant 7 are incompatible:

P{(((1) < @)N (& + dr) > aDN((0(1) > )N (d(2 + dr) < b))) =0 (5.4)
Theretore:
dP(X) = P((0(1) < @)D (o2 + dr) > a))+ P((0(r) > b)) (o(z + dr) < b)) (5.5)

Since dr is an infinitely small increment, equation (5.5) ean be presented as (value at the
instant 7 is assumed and the symbol (1) is dropped):
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dP(X) = P{(6 < a)N(o+ bdr 2 a))+ Pl(6 > b)N (6 + bar < b)) =

= P(o<a)N (0> a—dde))+ P((6>b)N (6 < b - bar) 5:0)

It 1s obvious that upcrossing occurs with positive roll rate and the downcrossing
with the negative roll rate:

dP(X) = P{(6< a)N(o 2 a-dar)N($>0))+

+P{(6>b)N(6<b-dar)N(p<0)) (5.7)

If the joint distribution of roll and roll rate f(d),d)) i1s known, the probability can be
expressed as:

a b-ddi 0
dP(X) = [ [f(@.0)dbdd+ [ [7(0.6)dbdo (5.8)
a Gdr 0 h >

Both external integrals in the equation (5.8) have limits that are infinitely close to
each other. Then application of the mean value theorem (for integration) yields the
following:

dP(X) =t [ f(a.0)bdb~dr [1(b,6)bel (5.9)

Assuming that the roll motion is a stationary process leads to independence of the
process value and its first derivatives:

f(0.0)= £($) /() (5.10)

This circumstance allows rewriting the equation (5.9) as:

dP(X) = dr(f(a) [ @iy 1) jf'(d))(i)dd)} (5.11)

The expression in parenthesis is finite and represents a rate of the random event of
both-sides crossing:

dP(X)= M\ ,dt
. T S TP (5.12)
M = 1(@) [£(©)odb— 1(b) [1(B)ot

Compared with formula (1.19), it is easy to see that the first component is actually
a rate of upcrossing through the level a. It can be shown the second component represents
the rate of downcrossings:
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L, = S (@ [/ (é)ddd
K (5.13)
b ==/ (b [/ ()bdd
The rate of downcrossing is actually always positive as the value of the integral is
negative.

If the distribution of the roll rate is symmetric, the integrals in (5.13) have the
same absolute value, but different signs:

Ry = S(@) [/@bedb: hy = f0) [1@)dd if  S(&)= f(~d) (5.14)

Finally if the roll process has zero mean, its distribution is symmetric and for
b=-a:

Ao =20, =20, =2f(a) [[(0)0dd if b=-a N f@)=,-0) (515
0
In partieular, for the generie normal process x(7):

NPT L/ 5 1¢
=Tl Bt gEN)

Statistieal estimates of the both-sides crossing can be obtained as averaged
number of erossing of both sides per unit of time:

. oom.o+m,
My =——= (5.17)
TR

Here m,. is an estimate of the mean value of the number of upcrossings through the level

a and m), is an estimate of the mean value of the number of downcrossings through the
level b, Tk 1s the duration of the record.

5.1.2. Confidence Interval for Both-Sides Crossings

Following the same steps as in the case of upcrossings, consider a sample of
stochastie process x, presented in a form of an ensemble of Ny records. Each record is
represented by a time history of Npy points with the time step Av, totalling n= Npp-1 time
steps. Then the event of both-sides upcrossing of the level a can be associated with a
random variable D defined for each time step as follows (sce Figure 5.1):
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Figure 5.1 Auxiliary random variable for both-side crossing

Total number of both-sides crossings:

n Ny

Wp=3 .20, (5.19)

i=l j=1

Estimate of probability that a both-sides crossing will occur at any given instance
of time:

- i L
Py nN, nN ZX 3 ( )

R i=l j=1

Mean number of both-sides crossing per record:

mpy =—=N—ZZ_:DM (3.21)

Estimate of rate of both-sides crossing also can be expressed through the
characteristics of an auxiliary variable:

~ n AV’(
. _mp 1

= D . ;
Mo nit nNRAzZZ ik (32)

i=l j=1

Evaluation of the confidence interval for the estimate of the rate of both-sides
crossing encounters certain methodological difficulties. The method of evaluation of the
confidence interval, described in the Section 1, was based on the binomial distribution of
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the auxiliary variable. The binomial distribution assumes Bernoulli trials, which implies
the independenee of the conseeutive events. If the level is high enough, the uperossings
are independent events; as a result of that, the time between them has an exponential
distribution and the number of these uperossings during a finite duration of time has
Poisson distribution. Conseeutive both-sides erossings ean be as elose to each other as a
half a period. This 1s not enough time for the autoeorrelation funetion to die out, therefore
the neighbor both-sides erossings may be dependent.

On the other hand, if time is fixed, all of the events are independent as the records
are independent. In this ecase, eonditions of Bemoulli trials are satisfied and the
distribution of the auxihary variable is binomial. The independenee of the event i the
time section, however does not neeessarily lead to the exponential distribution of time
between events or Poisson distribution of a number of events during fixed time, as these
figures require temporal eonsideration and do not exist in the time seetion.

Binomial distribution depends on the probability of the event oecurring at a
particular instant of time estimated by formula (5.20). Averaging over the time seetion
(averaging over all the records at the given instant of time) and temporal averaging both
are present here. This allows for mitigating possible errors in the evaluation of the
eonfidenee interval. Further evaluation was done m a similar way as describes mn the
seetion |.

Figure 5.2 shows this estimate ealeulated for the numerical example. The crossing
level 1s £9 m; as the process used in the example has zero mean and normal distribution
(wave elevations), formula (5.16) was used for the theoretieal value. As it 1s elearly seen
from this figure the theoretical value is included in the confidence interval of the
estimate. Therefore, the derivations above, and the formula (5.16) in particular. are not
rejected by the numerieal example.

0.001 0.001
F e 1
) =4
Theoretical o= 9-10
Estimate
value b
Y X €pomeeaa =
w counting 8 ]0—4 Theoretical
5-10 ‘ value
Lstimate by
- counting
7-10
0
Figure 5.2 Both-sides crossing rate: theoretical value and statistical estimate by counting. Crossing
level £9 m
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5.1.3. Applicability of Poisson Flow to Both-Sides Crossing

Theoretical derivation and statistical estimation of rate of both-sides crossing was
very similar to upcrossing. However the random event of both-sides crossing hardly can
be expected to follow the Poisson flow because crossing of one side may be too close in
time to the crossing of the other side for the independence condition to appy.

This can be very clcarly scen from thc numerical example considered through and
this rcport. As it was shown in thc Section 1, the Poisson flow becomes applicable to the
upcrossing event when the level of crossing exceedcd a value between 5.25 and 5.5 m
while the autocorrelation function could be considered to have died out after about 40-45
seconds. The mean time between crossings was somewhere between 75 and 89 seconds;
this provided enough separation betwcen events to consider thcm independent.

For the both-sides crossing, time between crossing one side or anothcr can be as
small as a half of zero-crossing period. For the considered example it is only about 5.8
seconds, which 1s obviously not enough to ensure independence. However, it is possible
that applicability of Poisson flow may be preserved for the very high levels, where a
statistically significant number of cases with only one-side crossing can exist.

To check the hypothesis above, a series of calculations for systematically changed
lcvels was performed for the considercd numcrical cxample. Using the method described
in the subsection 1.3.5 and keeping the maximum number of crossings per windows
around 7-9 (if possible), the boundary of applicability was determined to be between 10
and 10.5 m, sce Tablc 10,

Table 10. Test on applicability of Poisson flow for both-sides crossings

= N, m/Vy Nisix Pcarson chi-squarc test for Poisson distribution based on

€

4 5 éa Formula (5.16) Averaged number of crossings

ERY —l ,

- Z5 % d PaCd) | X d PG )
12 3 1 1.01 2 0.9491 1 0.33 0.0007 0 -
1.5 9 1 1.04 3 0.5928 | 2 0.74 0.212 1 0.6452
11.0 22 1 0.93 3 09024 | 2 0.64 0.92 1 0.3359
10.5 54 1 0.85 4 7.0184 | 3 0.07 4.38 2 0.1119
10.0 101 1 0.76 S 38.895 | 4 7.3E-8 25.062 3 1.50E-5
9.5 179 2 0.77 6 51.8343 | 5 5.8E-10 40.66 4 3.16E-8
9.0) 307 2 0.73 6 30.142 | S 1.38E-5 28.99 4 7.85E-6
8.5 57 2 0.87 7 13.4984 | 6 0.0358 13.6851 5 0.0177
8.0 860 4 0.75 7 65.106 6 4.10E-12 | 67.867 o) 2.85E-13
7.5 1441 12 0.65 7 370.7 6 0 391.1 5 0
7 2266 18 0.66 8 505.2 7 0 542.1 6 0
6.5 3514 36 0.65 7 1011 6 0 1068 5 0
6.0 5354 36 0.66 7 1015 6 0 1031 5 0
5.5 7676 36 0.6969 | 8 900.0 7 0 904.39 6 0
5.0 10852 36 0.734 8 875.86 g/ 0 870.56 6 0
4.5 14860 36 0818 |9 666.76 | 8 0 665.69 i 0
4.0 19482 36 09532 |9 496.39 | 8 0 494,97 7 0
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The outcome of the dircct Poisson applicability test of the both-sides crossings
can be sensitive to the windows sizc. Results of calculations shown in Table 11 were
obtained with the specific purpose to take the method beyond its breaking point. A
similar procedure was carried over for upcrossing in Section 1; there it was found that the
results of direct applicability test were not sensitive to the size of window. Behavior of
the both-sides crossings was found to be different and the results are sensitive to windows
size.

At all the levels (with exception of 9.5 m), the applicability of Poisson tlow was
not rejected if the larger windows were used. Fractions in the column of number of
windows (marked N,,) mean that thc window was of a larger duration than a record. For
example N,=1/4 means that four records makes one window, while N,=1.2 means thai
cach window uscs one record on its full length and 20% of length of the next record.

Results in Table I1 cannot be explained other than as a numerical artifact.
Propcrties of Poisson flow cannot be supported it the events are not independent. It was
quite clearly seen from a number of calculations discussed in Section 1; once cvents are
too close to each other, whilc the autocorrelation functions have not died out vet, the
hypothesis of Poisson flow was clearly rejectcd. To verify that results in Table 11 are. in
fact, a numerical artifact, another mcthod of testing was apphed.

Tablc 12 shows the results of a Kolmogorov-Smirmov goodness-of-fit test (K-S
test) applied as described in Section . Its application 1s completely justified it a
theoretical distribution is used: however it may be too “optimistic™ on the statistical fit, as
it does not have a mechanism to apply a pcnalty for statistically estimated parameters (see
Section 1). Results in Table 12, however, do not show large differences in judgment on
the applicabihity of Poisson flow to both-sides crossings.

Table 1. Test on applicability of Poisson flow for both-sides crossings (Increased window size)

N, m/V, N Pearson chi-square test for Poisson distribution based on

E 5

H 5 éo Formula (5.16) Averaged number of crossings

5 Z 5 e d Pl |8 d Pl
12 3 1/4 1.0426 2 0.7626 | 0.38 0.11 - :
1.5 9 1/4 0.94 4 0.6459 3 0.8859 0.2322 2 0.8904
11.0 22 1/4 0.88 4 0.7307 3 0.866 0.7651 2 0.6821
10.5 54 1/4 1.0652 14 4.7329 ) 0.1924 1.7518 2 0.4165
10.0 101 1/4 1.0206 8 10.4581 | 7 0.1641 Sl 37 6 0.5264
9.5 179 | 0.82 7 24.615 6 0.0004 16.963 5 0.0046
9.0 307 | 0.88 8 7.4806 7 0.38 6.9313 6 0.3272
8.5 517 1 1.1 8 2.3842 7 0.9356 2.3616 6 0.8836
8.0 860 I 1.2 10 124697 | 9 0.2549 11.5471 8 0.2401%
75 1441 1 1.21 16 11.0447 | 15 0.7494 10.9491 14 0.69
7 2266 1.2 0.8675 24| 26.3937 | 20 0.1532 21.2171 19 0.3249
6.5 3514 1.2 09172 27 21.9401 | 26 0.692 17.6174 | 25 09172
6.0 5354 1.2 1.0115 37 29.276 36 0.7788 26.1945 | 35 0.8588
85 7676 2 0.9526 | 33 4097 32 0.1329 34.0338 | 31 0.3236
5.0 10852 2 1.0136 | 41 28.7651 | 40 0.9068 265423 | 39 0.9356
4.5 14860 2 1.1773 54 34.3761 | 53 0.9779 344415 | 52 09712
4.0 19482 3 1.1015 47 18.68 46 0.999 19.0462 | 45 0.998
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Table 12. Kolmogorov-Smirnov test on applicability of Poisson flow for both-sides crossings

Formula (5.16) Averaged number of crossings
3 E
E s 2 2% 2 z %

= 28 | =% $5 £ E =3 ) £ £
12 3 0.0139 0.0241 | 0.0057 0.0099 1
11.5 9 0.0147 0.0442 1 0.0067 0.0202 1
11.0 22 0.0151 0.0706 1 0.0108 0.0507 1
10.5 54 0.0229 0.1682 | 0.0216 0.1589 1
10.0 101 0.0201 0.2024 1 0.0503 0.5053 0.9604
9.5 179 0.0558 0.747 0.6323 0.0785 1.0496 0.2205
9.0 307 0.0709 1.2419 0.0915 0.0754 1.3212 0.0609
8.5 517 0.0904 20553 0.0004 0.0812 1.8461 0.0022
8.0 860 0.1046 3.0662 1.3648-8 | 0.0878 2.5759 3.4488E-6
1.5 1441 0.1187 4.5071 0 0.109 4.1374 2.66E-15
7 2266 0.1235 5.8811 0 0.1094 5.2094 0
6.5 3514 0.1314 7.7869 0 0.1193 7.0746 0
6.0 5354 0.1302 9.5234 0 0.1258 9.2021 0
55 7676 0.1249 10.9419 0 0.1174 10.2896 0
5.0 10852 0.107 11.1445 0 0.1036 10.7952 0
4.5 14860 0.081 9.8696 0 0.0804 9.7988 0
4.0 19482 0.0579 8.0867 0 0.0569 7.9386 0

The theoretical distribution (5.16) and statistical fit both provide applicability of
Poisson flow above a level located between 8.5 and 9 m. This is somewhat lower than the
boundary found by the direct test of applicability of Poisson flow in Table 10, where it
was between 10 and 10.5 m. Such a discrepancy, however, has been obscrved when
applying both tcsts to just one-side upcrossing in Section 1.

The direct test of the applicability of Poisson flow seems to be more conservative
than the K-S test. However, in the case of both-sides crossing, it may give the wrong
answer if the size of the window is too large. To ensure reliable judgment of applicability
of Poisson flow, the direct test needs to be complementcd by the K-S test.

5.1.4. Relation between Both-sides Crossing and Absolute Value of Peaks

Consider a sample of stochastic process x, presented in a form of an ensemble of
N records. Each record is represented by a time history of Npr points with the time step
At, totaling n= Npr-1 time steps. Then the event of occurrence of a peak, exceeding a
given threshold or the level a, 1s associated with an auxiliary random variable Z dcfined
for each time step as follows (see Figure 5.3):
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Figure 5.3 Auxiliary random variable for peak over the threshold

This random variable Z is defined analogously to the auxiliary random variable D.
see the previous subsection. Following the same logic, the total number of all crossings is
just a sum of the values of the auxiliary variable for all time steps for all records:

n Ny
:ZZZII (5.24)

il =]

An estimate of the probability that a peak exceeding the threshold will occur at
any given instance of time:

5 '
‘ Z 3.25
= nN, nNR = ,i, ( )

The mean number of peaks over the threshold per record:

n Np

vty = :’V ZZ (

RII‘]

N

26)

The rate of events for the peak over the threshold can be introduced analogously
to the rate of upcrossing. Its estimate over a finite volume of data 1s defined as:

. m
A —Z = S 20
Pt = nAt nN At ZZ ( )

i=l j=I1

While the theoretical definition can be obtained as a result of a limit transition for
the infinite number of records and infinitely small time step:
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y iZ =— lm

K= ler Ko = (i3

2L ,',v_.;:f ”N At i=1 j=I d’ NR-” nN = j=1
o vl (5.28)
1 . NZ - . dp,

=— lim =— lim =—=
dt Nes=nN,  dt Neo= e dt

The discussion of applicability of binomial distribution for the auxiliary variable
Z follows the same thread as for the auxiliary variable D in the case of both-sides
crossings. Figure 5.4 shows an example calculation at the level/threshold £9 m. As it can
be seen from that figure, the cstimate of the rate of peaks over the threshold is statistically
identical to the estimate of the rate of the both-sides crossing. The theoretical result for
the ratc of the both-sides crossing is not rejected by either of the estimates.

0.001
0.001 Theoretical s }
value of ratc of |
____________ ¥ -4 | both-sides
© GR || =
Theoretical SIOSBI 65
value of rate of P BE i .
both-sides N _
crossings .10 ¢
5.10
-4
7-10
\ £,
Estimate of rate of Estimate of rate of peaks over
both-sides crossings  the threshold by eounting
by counting

0

Figure 5.4 Both-sides crossing rate: theoretical value and statistical estimate by counting vs. rate of
peaks over the threshold. Crossing level £9 m

Figure 5.5 shows a comparison between the theoretical values of the both-sides
crossing rate, its estimate by-counting, and the estimate of rate of the absolute value of
the peaks. The points and the curve practically coincide. The confidence intcrval was too
tight to plot on the figure.

To show the confidence interval, a log scale was used, see Figure 5.6. Even in the
log scalc the confidence interval remains too tight to be drawn, with the exception of the
level 10 m and higher. To avoid any further cluttering, the smallest of the two upper
boundaries was shown for the upper limit, while the largest of the lower boundaries was
shown for lower limit. All the numbers are also shown in Table 13.
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Figure 5.5 Theoretical value both-sides crossing rate (red curve), statistical estimate of both-sides

crossing rate by counting (circles) and statistical estimate of rate of absolute value of peaks over the
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Figure 5.6 Theoretical value both-sides crossing rate (red curve), statistical estimate of both-sides
crossing rate by counting (circles) and statistical estimate of rate of absolute value of peaks over the

threshold (crosses).
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Table 13. Both-sides crossing rates and rates of peaks

Crossing | Theoretical | Estimate of both-sides erossing rate Estimate of rate of absolute value of
level / both-sides peaks
threshold, crossing | low mid upper low mid upper
m rate
4 0.0543 0.0539 0.05412 0.0554 0.05417 0.05439 0.05568
45 0.04134 0.04102 0.04128 0.04234 0.04131 0.04156 0.04264
5 0.03049 0.02988 0.03014 0.03101 0.03013 0.0304 0.03127
5.9 0.02177 0.02106 0.02132 0.02201 0.02126 0.02152 0.02221
6 0.01506 0.01462 0.01487 0.01542 0.01479 0.01504 0.01559
6.5 0.01009 9.54E-03 | 9.76E-03 [ 0.01018 | 9.66E-03 | 9.88E-03 0.01031
7 6.54E-03 | 6.10E-03 | 6.29E-03 | 6.62E-03 | 6.19E-03 | 6.39E-03 | 6.71E-03
7.5 4.11E-03 | 3.84E-03 | 4.00E-03 [ 4.25E-03 | 3.90E-03 [ 4.07E-03 | 4.32E-03
8 2.50E-03 2.25E-03 | 2.39E-03 | 2.58E-03 | 2.31E-03 | 2.45E-03 | 2.64E-03
8.5 1.47E-03 1.33E-03 | 1.44E-03 | 1.58E-03 | 1.36E-03 | 1.47E-03 | 1.61E-03
9 8.41E-04 | 7.67E-04 | 8.53E-04 | 9.58E-04 | 7.86E-04 | 8.72E-04 | 9.78E-04
9.5 4.65E-04 | 4.31E-04 | 4.97E-04 | 5.78E-04 | 4.44E-04 | S5.11E-04 | 5.92E-04
10 2.49E-04 | 231E-04 | 2.81E-04 | 3.39E-04 | 2.36E-04 | 2.86E-04 | 3.44E-04
10.5 1.29E-04 1.14E-04 1.50E-04 1.92E-04 1.14E-04 1.53E-04 1.97E-04
11 6.47E-05 | 3.61E-05 | 6.11E-05 | 8.89E-05 | 3.89E-05 | 6.39E-05 | 9.17E-05
L1:5 3.14E-05 I.IIE-05 | 2.50E-05 | 4.17E-05 | 1.11E-05 | 2.78E-05 | 4.72E-05
12 1.48E-05 0 8.33E-06 1.94E-05 0 8.33E-06 1.94E-05

Looking at the numbers in Table 13, onc can confirm that estimates of thc rates of
the absolute value of peaks over the thresholds are statistically identical to estimates of
thc both-sides erossing rate. Both estimates include the theoretical value for the both-
sides crossing rate into their confidence intervals. Therefore, statistics of the absolute
value of peaks over the threshold can be used to characterize events of both-sides
crossing.

5.2.Theoretical Solution for Both-sides Crossings

The theoretical solution for the upcrossing problem was readily available. It i1s not the
case for the peak-based cnvelope. At the same time, the approximate theoretical solution
1s needed to verify the extrapolation method being developed.

5.2.1. Distribution of Absolute Value of Peaks

The total number of peaks (both positive and negative) found in the wave
elevation sample data set was 62,135. The absolute value of a peak 1s defined as:

St = Hil] | Byt () =0} (5.29)

Figure 5.7 is a histogram of absolute values of peaks supcrimposed with Rayleigh
distribution. The histogram is somewhat similar to the distribution of positive peaks (see
section 3); however, it cannot have any negative valucs by the definition (5.29). It shows
larger valucs in the vicinity of zero in comparison with the histogram of positive peaks;
the value of the first bueket is well above 0.1, while the first bucket of the positive peaks
1s below 0.1.
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Figure 5.7 Histogram of absolute values of peaks of wave elevations with superimposed Rayvleigh
distribution

Obviously, the absolute values of peaks do not follow a Rayleigh distribution.
This result can be explained in a wave, similar to the case of positive peaks. The reason
why a Rayleigh distribution is inapplicable as a wholc, is existence and statistical
influence of sccondary pcaks. It is known that number (and statistical influence) of
secondary peaks depends on the spectrum bandwidth. As it was already mentioned in the
section 3, peaks of a normal process with “moderate” bandwidth follow a Rice
distribution. Once the bandwidth becomes very large, the autocorrclation function dies
out very quickly and the process becomes cffcctively white noise. If there is no
autocorrelation, peaks are encountered totally randomly; they become distributed just like
any other value of the process. Therefore, for the limit case of the spectrum bandwidth,
the peaks takc a normal distribution. The other limit case is a very narrow spectrum. As
it was mentioncd in Section 3, the distribution of peaks of narrow-banded process follows
Rayleigh. It also can be explained by the fact that thc narrow spectrum makes the
envelope a slowly changing function, and the vanance of the zero-crossing period
becomces very small. It also means that there are very few secondary peaks: they become
statistically insignificant. The envclope contains all of the pecaks: sampling the envelope
with almost constant step makes the peaks keep the distribution of the envelope, c.g.
Rayleigh distribution. This was demonstrated in Section 3 for the positive peaks of wave
elevations recorded from the moving gauges (encounter wave sample).

Similar to the distribution of positive peaks. the distribution of absolutc values of
peaks follows a truncated Raylcigh distribution (see Section 3) starting from a certain
bucket.
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S.(@)= kn(a,);%cxp(— ZUV J ' ' 5 (5.30)

Here k,(a,) is normalization coefficient calculated at the truncation valuec a,. The
following formula was derived in Section 3 for the truncation coefficient:

A ]
J(a) exo(zyt] (5.31)

Substitution of formula (5.31) into formula (5.30) gives the following expression
for the truncated Rayleigh distribution:

f‘”(a):pi/ex{—w} L UEE (5.32)

X

The cumulative distribution is expressed as:

F.(a)= 1—cxp[—“’+ﬁ] . a>a (5.33)

X

The truncated Rayleigh distribution and truncated histogram are shown in Figure
5.8; the value of truncation has been chosen to pass Pearson chi-square goodness-of-fit
test. The results of the Pearson chi-squarc goodness of-fit test are also shown in Figure
508

Thc explanation is similar to the one given in Section 3. Secondary peaks are
relatively small. Large peaks are primary peaks; thereforc thcy belong to the envelope. It
is also known from the theory of the envelope that conditional variancc of the pcriod
decreases when the amplitude incrcases. This means that large-amplitude oscillations
have periods very close to the mean period; the illustration of this effect can be scen in
the appendix to (Belenky and Bassler 2010). Again, if the peaks belong to the envelope
and are sampled with almost a constant step, they keep the distribution of thc cnvcelope,
e.g. Rayleigh distribution.

Consider the sample with a narrow spcctrum (see Section 4), created by the wave
elevations “recorded” with a “gaugc” moving in the same direction with the wavcs
(following encounter waves). It was shown in Section 3 that the distribution of its
positive peaks is closer to Rayleigh; the positive peaks start following truncated a
Rayleigh distribution from the amplitudes of 0.54 m, while for the “zero-speed” case for
this value was 1.51 m.
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Figure 5.8 Histogram of absolute values of peaks and truncated Rayleigh distribution

A similar picture can be observed for the absolute value of the peaks. There were
32,717 peaks in total. Figure 5.9 shows a histogram of absolute values of peaks for 15-
knot case of the encounter waves. Visually, the hypothesis of Rayleigh distribution looks
very plausible. However, the Pearson chi-square goodness-of-fit test rejects the
hypothesis, because of the tirst two buckets.

0371
p-d.f. Pearson chi-square goodness-of-fit test
Number of buckets 63
Tl ¥’ =787.46 d=62 P(x’.d)=0.0

0.2 AN
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Figure 5.9 Histogram of absolute value of peaks for the case with forward speed 15 knots and
Rayleigh distribution

As 1t could be expected, the truncated Rayleigh distribution becomes applicable to
the absolute peaks of the following encounter waves with smaller values (Figure 5.10) in
comparison with the zero-speed case (Figure 5.8). The reasoning is similar: the narrow
band spectrum makes the secondary peaks less likely and large-amplitude data are likely
to have a period close to the mean period.

Based on the considerations above, it seems reasonable to assume that large peaks
follow the truncated Rayleigh distribution.
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Figure 5.10 Histogram of absolute value of peaks for the case with forward speed 15 knots and
truncated Rayleigh distribution

5.2.2. Rare Problem for Both-sides Crossing

Consider the rare problem for a peak-based envelope. The objective is to find a
conditional probability such that if the peak-based envelope crosses a given threshold a,
it will exceed a given level a,.

Then, the conditional probability that the process will cross the level a; if the
level a) is crossed (formula 3.9), provided a,> a; and taking ito account Rayleigh
distribution of the envelopc:

[ ¢ .
po @) 7 =exp[_ (a; —a.')]

[ridaa TFA) =4

fla) ! C=

The value P expressed with formula (5.34) 1s the probability that if the process x
up-crosses the threshold a,_ 1t will also up-cross the level a,. It also can be considered as
a fraction (actually a limit value of it) of the upcrossings through the threshold a;, which
also cross the level a».

As the sample-process x 1s normal (the normal distribution 1s symmetric) and
centercd (the mean value 1s zero), thc same value P describes the conditional probability
that the process x will down-cross the level —a; if it has previously down-crosscd the
threshold —ajy.

Then, this probability also deseribes a fraction of both-sides crossing of the
threshold +a, that will also cross the level +a,.

The above consideration concludes that the problems of upcrossing,
downerossing, and both-sides crossing have the same rare solution if the process is
normal and centered. In principle, this statement can be generalized for any symmetric
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distribution, but it is outside of the scope of the current consideration as the sample
process Is normal.

Finally, the solution of the rare problem for the both-sides crossing is identical to
the solution of the rare problem for upcrossing:

i .8
P,,:ex,{—(";"')LP a,>a, (5.35)
W, ) 2

Similar to the upcrossing, case formula (5.35) can be interpreted in terms of
absolute values of peaks: formula (5.35) expresses a eonditional probability, that an
absolute value of a peak exceeding the threshold «; will also exeeed the level a>. As the
absolute values of peaks have a truncated Rayleigh distribution, such an intcrpretation of
(5.35) 1s only valid tor a, < a).

The complete theorctical solution for the both-sides crossing rate of the level a»
can be expressed as:

)\'ul (al‘) = )\'uh(al )Pﬁ’ (5 36)

Taking into aceount formula (5.25) tor the both-sides erossing of the threshold a,
and simultaneously substitute (5.35):

1 |V, a: (a; —a :)
Ao(a,)=—_|<exp ——— |exp ———= 537)
{2 n\/V, F{ ZV‘] I{ 2V, ] ( '

After simplification, the formula (5.37) yields:

WL 538
a,)=—_|— - 5.38
ab 72 - ‘/,‘v p 2”‘,“ ( )

Formula (5.38) is identical to Formula (5.16). It is the direct expression for the
rate of the both-sides crossing of a normal process with zero mean. This confirms the
applicability of the rare solution (5.35) for the both-sidess crossings.

Direet applieation of the formula (5.36) for extrapolation may encounter
difficulties related to applicability of Poisson flow.

Strietly speaking, the applicability of the Poisson flow is required only for the
level where the probability of failure will be evaluated. In this case, this would be the
level a>. Theretore, theoretieally, Poisson flow may be not applieable at the threshold «.
but the method is still valid. However, by the very meaning of extrapolation, the crossing
events of the level a> are not expected to be seen. Therefore, it is impossible to verify
applicability of the Poisson flow for the level a;.
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A practical way to insure applicability of the Poisson flow on the level a; is to
verify that it is applicable on the lower level, for which there is enough data to make a
judgment. If applicability of the Poisson flow has been confirmed for the threshold a;,
then it is applicable for the level a.

As it was shown previously (see Table 10) the applicability of the Poisson flow
for the both-sides crossing can only be seen above the threshold of 10.5 m. There were
only 54 events on that level. As it was explained, due to strong autocorrelation, these
events have a tendency to appear in pairs, so the threshold has to be very high, so one
side 1s crossed and another one does not. This situation is expected to become even
worse for the encounter waves as it takes longer for the autocorrelation function to die
out. These difficulties justify application of the envelope instead of the process itself (see
Section 4).

5.2.3. Rare Problem for Upcrossing of Envelope

Consider the rare problem for the theoretical envelope upcrossing. The theoretical
envelope is a stationary stochastic process; its values have a Rayleigh distribution and its
first derivative is distributed normally. Based on these considerations, it was shown in
section 4 that the upcrossing rate of the envelope can be presented as, see formula
((4.82):

o — a’
A =a [~=—expl - 5.39
. 2V, pL ZK) {5.35)

Application of the general formula for the rare solution (equation 3.9), for the
case of the envelope, yields the following expression:

5 g 5 ! ] 2]
a, a, a, a, a, a, —a, (5-40)
Jka) V. 20 | (9% 2V, a, 2V,

Taking into account (5.35) the relation between the solutions for rare problem for
the upcrossing of the normal process itself and its envelope:

a,
Pp=2p ;
- (5.41)

To verify the solution of the rare problem, consider the complete one, expressing
the rate of the upcrossing of the envelope through the level a,:

hla) =R (a)f, (5.42)

Consider substitution of (5.39) and (5.40) into (5.42)
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(5.43)

(5.44)

Formula (5.43) is identical in strueture to formula (5.39) and explieitly expresses
the rate of upcrossing through the level a>. This is the eonfirmation of eorrectness of the
solution of the rare problem (5.40).

5.2.4. Upcrossing of Peak-based Envelope vs. Theoretical Solution

As it was shown in the subseetion 4.5, the rate of uperossing of a peak-based
envelope may be quite different form the theoretieal solution. It depends on width of the
speetrum, if the theoretieal solution can be used to describe the rate of uperossing. If the
speetrum is narrow, the envelope is a slowly ehanging funetion (in eomparison with the
proeess itself), then the peak-based envelope is quite elose to the theoretical envelope. see
Figure 5.11 (a). If the spectrum is relatively wide the rate of change of the envelope is
eomparable with the first derivative of the proeess and the differences between the peak-
bascd and theoretical envelope may not be insignificant, see Figure 5.11 (b).

This cxplains the effect described in the Seetion 4. The theoretical upcrossing
rate of the theoretical envelope (formula 4.83) has shown good agreement with the
statistieal estimate of the uperossing rate of the peak-based envelope for the following
wavce case (see Figure 5.12 a), while the theoretieal solution and statistical cstimates do
not agree for the zero-speed case (see Figure 5.12 b). This creates a problem: a
theoretieal solution 1s needed to eompare with the results of EPOT method.
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Figure 5.11 Zoomed in fragments of peak-based envelope superimposed on the theoretical envelope:
a) recorded™ by the “gauge” moving with the waves (pure following seas) with the speed 15 knots b)
recorded by fixed “gauge” —zero speed case
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Figure 5.12 Statistical estimate of upcrossing rate (1/s) of the peak based envelope : a) recorded™ by
the “gauge” moving with the waves (pure following seas) with the speed 15 knots b) recorded by fixed
“gauge™ —zero speed case

5.2.5. Both-Sides Crossing Rate as the Theoretical Solution

As it was demonstrated above, there is a strong relationship between absolute
value of peaks and both-sides crossings. It also was shown that the rate of the both-sides
crossing has a theoretical solution. For the case of symmetric centered process, it equal to
double upcrossing rate, see formula (5.15).

The event of the both-sides crossing through the prescribed level obviously 1s the
partial stability failure. It was shown also that the Poisson distribution is not applicable to
this event, and therefore its use in these calculations may be limited. However, it still
makcs sense to see the relationship between the rate of the both-sides crossing and rate of
upcrossing of the peak-based envelope.

Comparison of the statistical estimates of upcrossings of the peak-based envelope
with the theoretical rate of both-sides crossing is shown in Figure 5.13 for the following
waves case. Obviously, these are two different values; the theoretical rate of both-sides
crossings does not belong to the confidence interval of any of the statistical estimates.
However, the tendency of the estimates shows some signs of conversion with the
theoretical rate of both-sides crossing. This tendency can be confirmed by comparison of
two theoretical curves, not limited by gathered statistics. They are shown in Figure 5.14;
the convergence tendency 1s obvious.

The convergence of the rate of the both-sides crossing and the envelope
upcrossing is not universal; it is not true for the zero speed case shown in Figure 5.15.
After the crossing the curve shows the tendency to diverge. In principle, same effect can
be seen for the following waves, but it occurs for higher levels (~25 m vs. 10 m) and
much smaller number for the rates (1.E-18 vs. 1.E-3).

Figure 5.16 shows the theoretical rate of thc both-sides crossing plotted along
with statistical estimates of upcrossing of the peak-base envelope for the zero speed case.
One can notice that the theoretical value starts belonging to the confidence interval from
the level of 9.5 m and never leaves it after that level.
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Figure 5.13 Theoretical rate of both-side crossing and statistical estimate of upcrossing of the peak-
based envelope. Following Waves Case
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Figure 5.14 Theoretical rate of both-sides and upcrossing of the envelope. Following Waves Case
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Figure 5.15 Theoretical rate of both-sides and upcrossing of the envelope. Zero-speed Case
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Figure 5.16 Theoretical rate of both-sides crossing and statistical estimate of upcrossing of the peak-
based envelope. Zero-Speed Case

These comparisons show that both-sides crossing ratc, in principlc, can be used as
a theoretical solution for the problem of upcrossing of peak-based cnvelope.

For the following waves case, asymptotic convergence of the both-sides crossing
rate and envelope upcrossing rate confirms the above statement; since the peak-based
envelope is a good approximation for the theoretical envelope, the theoretical envelope
upcrossing rate can be used for a close approximation as well.

The reason why the convergence is asymptotic seems to be as follows. Thc rate of
envelope upcrossing for lower levels is smaller then the rate of both-sides upcrossing,
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then one crossing of the envelope corresponds to scveral both-sides crossings.  The
reason for that is significant clustering due to the narrow spectrum. Once the level
increases, there are more chances that the process crosses the level only twice (both
sides) corresponding to the highest peak in vicinity, as the chances that the two
ncighboring peaks are exactly the same is small.

For the zero-speed case, there 1s no convergence between the theoretical envelope
upcrossing rate and both-sides crossing ratc. The both-sidcs upcrossing rate goes higher
than the envelope upcrossing rate until a certain point and then becomes slower (point A
in Figure 5.15. This can be explained as follows. Before point A, the level is relatively
low, so there are significant chances that scveral periods will be crossed once the peak-
based envelope is crossing. This mechanism is similar to what was described for the
following wave case. After point A, the crossing rate on the envelope upcrossing is
higher than the both-sides crossing. That means the envelope has more crossings than the
process itself (both sides). This occurs because the envelope oscillates between peaks
(sce Figure 5.12b) of the process and can cross the level while the peak remains below
the level. This 1s exactly the reason why the peak-based envelope was introduced in
section 4. Therefore, the both-sides crossing rate is the value to trust here.

Figure 5.16 shows a convergence of the statistical rate of the upcrossing of the
peak based envelope with the theoretical rate of the both-sides crossing. The reason why
the differcnce 1s large for smaller value of the threshold is likely to be the same as above,
one crossing of the peak-based envclope corresponds to several crossings of the both-
sides of the process. Once the level is high enough that only the highest peak in a cluster
can reach it, the theorctical rate becomes included in the confidence interval.

5.2.6. Approximate Solution for Peak-Based Envelope Upcrossing

Considerations in the previous subsection established that the correct theoretical
solution — the rate of the both-sides crossing — is achieved asymptotically. This may
render inconclusive the comparison of the extrapolation results with the both-sides rate
alone, as the failure always can be explained that the level is not “*high enough™.

Therefore it makes sense to use the upcrossing rate of the theoretical envelope for
another comparison base for the following wave case. This makes the following wave
case the only “‘clean” comparison, where the theoretical solution is available everywhere.

An approximate non-rare solution may bc uscful for the zero specd case. It can be
developed by the least square approximation through the statistical estimate of
upcrossing. At least such a solution can be uscd to test the solution for the rare problem.
The upcrossing rate 1s scarched in the following form:

k‘_(:)=cxp(c0+c,:+c322) : z=aq, (5.45)

Taking the natural logarithm for both sides of (5.45) and introducing a new
variable y yields:
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p=gy togtez i P ln(k() (5.46)

Coefficients ¢, ¢, and ¢, are evaluated with the least square method using
statistical estimates for the upcrossing rates. The values of these coefficients are
characterized by significant variability from onc dataset to another, see Table 14. The
result 1s shown in Figure 5.17.
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Figure 5.17 Rate of upcrossing of the peak-based envelope: zero-speed case

Table 14. Coefficients for curve fit for upcrossing rates

Coeflieient for the curve fit Co o) fa

Oniginal Data Set -5.427 0.628 -0.093
Alternative Data Set | -1.054 -0.362 -0.038
Alternative Data Set 2 -5.209 0.715 -0.106

5.3.Extrapolation with EPOT: Following Wave Case

As it was demonstrated above, only the following wave case allows comparison
with the robust theoretical solution. The reason 1s that as the encounter spectrum is
narrow in the following waves, the theoretical envelope becomes a slowly changing
function of time in companison with the process itself. Therefore, the peak-based
cnvelope becomes a reasonable approximation of the theoretical cnvelope. Then the ratc
of upcrossings of the peak-based envelope can be described by the theoretical formula,
which is available for the theoretical envelope.

That said, the following wave case truly represents a test bed for thc method sincc
the true answer is known from theory.
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5.3.1. Distribution of Maxima of the Peak-Based Envelope

Application of the EPOT method is only slightly different for the POT method
that was deseribed mn detail in Seetion 3. Therefore the foeus must be on these
differenees.

The first step is the search for maxima of the peak-based envelope, see Figure
5.18. Dastribution of the maxima of the peak-based envelope is shown in Figure 5.19(a)
along with Rayleigh distribution (however, the character of the distribution looks
lognormal rather than Rayleigh). At the same time, the truncated Rayleigh distribution
(see formula 5.30) 1s not rejeeted by the chi-square goodness-of-fit test for the tail of the
distnbution starting at the 7 m level, see Figure 5.19(b).
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Figure 5.18 Peak based envelope (red) and its maxima
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Figure 5.19 Distribution of maxima of the peak based envelope superimposed with Rayvleigh
distribution (a), truncated Rayleigh dustiribution

5.3.2. Fitting Weibull for Maxima of the Peak-Based Envelope

Similar to the POT method, the seeond step is fitting a histogram of maxima of
the peak-based envelope and fitting the Weibull distribution to these data. In this context,
the Weibull distribution is used just as a smoothing curve for the empirieal distribution

Only the data exeeeding a given threshold are used to fit the Weibull distrnibution.
Exaetly like in the ease of the POT method described in Seetion 4 | the first guess for the
parameters of the Weibull distribution is performed using the moments method described
in Seetion 2 and then the method of maximum likelihood is applied. The samples are
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shown in Figure 5.20 along with the results of testing of the goodness-of-fit. The fitted
distribution was not rejected in both cases for the threshold equal to 8 m and 9 m.

The third step is evaluation of the confidencc interval for the fitted distribution.
The technique for evaluation of the confidence interval is described in the section 3. The
idca 1s to find the confidence interval for the mean value and variance estimates and then
shift and scale the data accordingly. Once donc, two more Weibull fits are performed on
the altered data, corresponding to upper and lower boundary. The sample result for 9 m
threshold is shown in Figure 5.21.
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Figure 5.20 Weibull fit for the maxima of the peak-based envelope exceeding the threshold of a) 9 m
and b) 8 m
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Figure 5.21 Weibull CDF with confidence interval fitted for the maxima of the peak-based envelope
exceeding the threshold of 9 m

Figure 5.21 also shows the Rayleigh distribution completely contained (at least
visually) within the confidence interval and almost coinciding with the Weibull fit. This
is consistent with previously made conclusions that the Rayleigh distribution is not
rejected for the tail of the maxima of the peak-based envelope.

The Weibull fit actually represents the conditional distribution for a peak of the
envelope to excecd a level if the given threshold was already excecded.
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5.3.3. Extrapolation with the Distribution of the Peak-Based Envelope

Once both non-rare and rare solutions are obtained, the procedure of extrapolation
is trivial: 1t is the application of formulae (3.22-3.24). The samplc rcsult is shown in
Figure 5.22 for the threshold of 9 m. The cxtrapolated solution is shown with its
confidence interval and superimposcd with the rate of upcrossing of theoretical ecnvelope
as well the theoretical rate for both-sides crossings. As the peak-bascd cnvelope 1s
considered as a reasonable approximation of the theoretical envelope. the upcrossing rate
of the lattcr i1s expected to stay within the confidence interval of the cxtrapolated solution.
As it can be seen from the Figure 5.22, thc thcoretical solution stays within the
confidence interval until a ccrtain level (it equals 18.5 m for the 9 m of the threshold), the
breaking point as it was defined in Section 3.

Similar to the upcrossing problem, discussed in Section 3, the position of the
breaking points depends on the threshold, see Figure 5.23.
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Figure 5.22 Extrapolated estimate of upcrossing rate of the peak-based envelope with confidence
interval as a function crossing level. The threshold is 9 m, 53 peaks
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Figure 5.23 Breakpoint level (the level below which the extrapolation is still good) vs. threshold

Figure 5.22 also shows the theoretical rate of the both-sides crossing. As it was
shown abovc, this solution gives “the correct” answer only for the very high level and
only for the case of narrow spectrum. This 1s the reason why the confidence interval does
not include the rate of the both-sides crossing for smaller levels; however, starting at thc
level of ~11.4 m, the theoretical rate of the both-sides crossings enters the confidence
intcrval of the extrapolated solution and stays there until the level of 18.75 m because of
the convergence discussed above.

The breaking point evaluated for the both-sides crossing rate bchaves similarly to
the “envelopc breaking point” as it can be seen from Figure 5.23.

Further analysis of the performance of the EPOT method is done for the level of
15m. As it can be seen from Figure 5.23, this is the level where the method starts
breaking up for some of the thresholds. Also the event of upcrossing the level of 15 m is
very rare. The mean time for the event (based on theoretical envelope upcrossing ratc) is
about 7 years and 4 months. So, if 10 events are needed to estimate the rate, it will takc
about 73 years of data, while the EPOT method only used 100 hours of data.

Figure 5.24 shows the influence of the choice of the threshold on the rare solution
(probability that the peak-based envelope exceeds the level of 15 m, if the threshold is
exceeded), while Figure 5.25 shows the complete solution. Similar to Figure 5.22,
Figure 5.25 shows both theoretical solutions: the ratc of upcrossings of the theoretical
envelope and the both-sides crossing rates. It is clearly seen from Figure 5.25 that for the
level of 15 m, the difference between the two theoretical solutions is small in comparison
with the width of confidence interval of statistical extrapolation.

The cstimates oscillate around the theoretical solution (compare to Figure 3.22
and Figure 3.26 plotted for the upcrossing problem in scction 3), so averaging through
several levels will make the estimate more stable. Formulae (3.46-3.47) express this
averaging procedure. Averaging is performed for all the thresholds while the number of
points remains above 30 (30 points is considered enough to evaluate a histogram and fit
the distribution). The results of averaging are shown in Figure 5.26.
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As it can be seen from the inscrt in Figure 5.26, both theoretical solutions are
included in the confidence interval for the tcst level of 15 m. Breaking points are 16.5 m
and 17 m for the theoretical envelope upcrossing ratc and rate of both-sides crossings,
respectively.
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Figure 5.25 Statistical extrapolation of the upcrossing rate of peak-based envelope - complete
solution for the level of 1S m

Successful application of the averaging over several thresholds for the current
numerical example does not prove yct that it will work as well for all other cases. While
it seems to be impossible to prove, it still makes sense to try it at least on two alternative
data sets uscd earlier in the Section 3. Figure 5.27 shows dependence of thc breakpoints
of thesc datasets as a function of the threshold. The lowest point is about 12 m.

Figure 5.28 shows bchaviors of a rare solution and the complete extrapolated
estimate for ;=15 m using two alternative datasets. Thesc behaviors are principally
similar to the original set seen in Figure 5.24 and Figure 5.25. Most of the threshold
valucs enable the estimate “'to catch™ the theoretical solution in its confidence intcrval.
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Figure 5.27 Breakpoint level (the level below which the extrapolation is still good) for the
extrapolated estimate of upcrossing of peak-based envelope vs. threshold for two alternative data sets

Figure 5.29 shows results of the averaging technique for two alternative datasets.
Both theoretical solutions, the rate of upcrossing of the theoretical envelope and the rate
of both-sides crossing, are within the confidence interval of the extrapolated estimate.
Data for breaking points are shown in Figure 5.29 as well.

In general, the performance of the method can be characterized as satisfactory
taking into account the rarity of the event of crossing the level of 15 m.
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Figure 5.28 extrapolated estimate of conditional probability that the process will exceed the level of
15 m if the threshold has been crossed — rare solutions (upper plots: a, b) and complete extrapolated
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Figure 5.29 Level 15 m: theoretical solution and extrapolated estimate averaged for (a) the set |
thresholds 7.5-9.6 m; the distribution for the threshold 9.6 m was fitted with 33 points. (b) For the set
2 range is 7.5-9.6 m with 30 points for the threshold 9.6 m.

5.3.4. Extreme Value Distribution of the Peak-Based Envelope

The extreme value distribution is an alternative way of solving the rare problem,
as it was shown in Section 3. While the Weibull distribution 1s used in both cases, the
way the dataset is sampled makes the difference. Classic extreme value theory uses the
maxima of a process sampled within a constant time window. The size of this window
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becomes a parameter that needs to be set in order to use the method. In principle, this size
must produce independent data points in the neighboring windows. While the influence
of the window size still needs to be studied, it was chosen to be 900 seconds for the
sample in this section. Figure 5.30 illustrates that procedure: only a point in the window
1 was collected as thc maximum value in the window 2 did not exceed the sample
threshold of 9 m.
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Figure 5.30 Collecting data for extreme value distribution, threshold 9 m

Further procedure and gencral character of the results arc not very different from
the previous case where the Weibull distribution was fitted using all maxima of peak-
based distribution exceeding the threshold. Figure 5.31 shows dependence of the
breakpoint level (the lcvel until which the cxtrapolated estimate still contains a theorctical
solution 1n its confidence interval) based on two theoretical solutions: the upcrossing rate
of the theorctical envelope and theoretical rate of the both-sides crossings. Both
breakpoints are quite close to each other, duc to obscrved convergence of both of the
theoretical solutions for highcr levels.
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Figure 5.31 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on extreme value distribution

Figure 5.32 shows the influcnce of the choice of the threshold on the rarc solution
for the level of 15 m ( the probability that the peak-based envelope exceeds the level of
15 m, if the threshold 1s exceeded), see formula (3.44), while Figure 5.33 shows the
complete cxtrapolated estimated along with both theoretical solutions. Due to
convergence, the difference between the two theoretical solutions 1s small in comparison
with the width of the confidence interval.
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Figure 5.33 Statistical extrapolation of the upcrossing rate of peak-based envelope - complete
solution for the level of 15 m based on extreme value distribution

Similar to Figure 5.24 and Figure 5.25 (as well as analogous to Figure 3.22 and
Figure 3.26) plotted for the uperossing problem in Seection 3, the estimates oscillates
around the theoretical solution, so averaging through several levels will make the
estimate more stable. Formulae 3.46-3.47 express this averaging proeedure. Similar to
the first method (fitting Weibull to maxima, see previous subsections) averaging 1
performed for all the thresholds while the number of points remains above 30 (30 points
is eonsidered enough to evaluate a histogram and fit the distribution). The results of
averaging are shown in Figure 5.34. Both theoretical solutions are ineluded in the
confidenee interval for the test level of 15 m. Breaking points are 17.75 m and 18 m for
theoretical envelope upcrossing rate and the rate of the both-sides crossings, respectively.
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extreme value distribution. Insert shows the level of 15 m

Successful application of the averaging over several thresholds for the current
numerical example does not prove yet that it will work as well for all other cases. While
it seems to be impossible to prove, it still makes sense to try 1t at least on two alternative
data sets used earlier in Section 3. Figure 5.35 shows dependence of the breakpoints of
these datasets as a function of the threshold. The lowest point 1s about 12 m.

Figure 5.36 shows behaviors of the rare solution and the complete extrapolated
estimate for a>=15 m using two alternative datasets. These behaviors are principally
similar to the original set seen in Figure 5.32 and Figure 5.33 as well as Figure 5.24,
Figure 5.25 and Figure 5.28. Most threshold values enable the estimate “to catch” the
theoretical solution in its confidence interval.
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two alternative data sets

Figure 5.37 shows results of the averaging technique for two alternative datasets.
Both theoretical solutions (the rate of upcrossing of the theoretical envelope and rate of
the both-sides crossing) are within the confidence interval of the extrapolated estimate.

Data for breaking points are shown in Figure 5.37.

a) Rare solution, alternative set 1

b) Rare solution, altemative set 2
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Figure 5.36 Extrapolated estimate of eonditional probability that the proeess will exeeed the level of
15 m if the threshold has been erossed — rare solutions (upper plots: a, b) and complete extrapolated
estimate (lower plots: ¢, d) for two alternative data sets for a;=15 m. Both eases use extreme value
distribution for extrapolation
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Figure 5.34 as well as Figure 5.37 also shows comparison between two estimates
bascd on the Weibull fit (described in the previous subsection) and extreme value
distribution. Both confidence intervals have quite substantial common area, which means
statistical equality of the two estimates.

The two estimates used the rare solution based on different ways of using Weibull
distribution: as a distribution of maxima and an extreme value distribution. The fact that
both of thcse ways have produced thc same solution is notable; it can be uscd to check
the estimates against each other when theoretical solutions are not available.

The average break point between all three datascts was 17.8 m (based on the rate
of upcrossing of the theoretical envelope). The mean time before such an event is about
330 years. Assuming that at least 10 events are needed to get a statistical estimate, it will
take about 3,300 years worth of data to get the result. The EPOT method produccd this
result with only 100 hours of data; this makes the data reduction factor equal to 290,500.

5.4.Extrapolation with EPOT: Zero-Speed Case

5.4.1. Approximate Theoretical Solution for Zero-Speed Case

As it was discussed above, there is no exact theoretical solution available for the
upcrossing of the peak-based envelope in the general casc. Such a solution is only
available for the case of the relatively narrow-band spectrum, when the envelope
becomes a slowly changing function of time (in comparison with the process itself) and
the peak-based envelope becomes a relatively close approximation of the theorctical
envelope.
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To overcome this difficulty, the approximate solution was proposed in one of the
previous subsections. The non-rare solution used regression to express dependence of the
upcrossing rate on the threshold, see formula (5.45).

It is also assumed that the large-values of the peak-based envelope are likely to
follow a Rayleigh distribution. This assumption can be partially justified as the absolute
value of the peaks do follow a truncated Rayleigh distribution (5.32). However, the
distribution of absolute value peaks is not identical to the distribution of peak-based
envelope, as points of the latter arc caleulated with linear interpolation between the peaks

(see Section 4). This assumption nceds to be checked by the goodness of fit-test of

maxima of the peak based envelope. Once this assumption has been checked and found to
be acceptable, Formula (5.40) 1s to be used for the rare solution. Therefore the complete
solution can be formulated. However, it is only an approximation. This means that an
agreement between this solution and the extrapolation does not validate the method.
neither the disagreecment between the approximate solution and the extrapolation would
invalidate it.

It still makes sense to see how two other theoretical solutions (the rate of

upcrossing of theoretical envelope and theoretical rate of the both-side crossings) will
compare with the extrapolation result.

5.4.2. Distribution of Maxima of the Peak-Based Envelope

A sample record with the maxima of the peak-based envelope 1s shown in Figure
5.38. Comparing to the similar picture for the following wave case in Figure 5.18, one
can sec that the envelope 1s no longer a slowly changing process; as a result, the
population of maxima of the envelope should not be much different from the population
of absolute values of peaks of the process itself.
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Figure 5.38 Peak based envelope (red) and its maxima: zero-speed case

This explains applicability of the truncated Rayleigh distribution, as shown in
Figure 5.39 (b), while the Rayleigh distribution as whole remains inapplicable (see
Figure 5.39 (a)). Also, this applicability can be used to justify the assumption made
earlier for using formula (5.40) for the rare solution.
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However, thc applicability of the truncated Rayleigh distribution was judged
based on the Pearson chi-square goodness-of-fit test, which did not reject this hypothesis
for a particular dataset. So, at least, this applicability needs to be checked for all three
datasets considered. The results of this check are summarized in Table 15. Note that
without removal of a single outlier in the last bucket of the histogram for the Alternative
Dataset 1, the goodness-of-fit test would reject the hypothesis for all starting values with
an exception of 10.25 m.
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Rayleigh
e distribution

Truncated Raylcigh
distribution
0.6 [T

021
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b 1'=20.5, d=13, P=0.0836
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Figure 5.39 Distribution of maxima of the peak based envelope superimposed with Rayleigh
distribution (a), truncated Rayleigh distribution. Zero-speed case

Table 15. Applicability of Truncated Rayleigh Distribution for Maxima of Peak-Based Envelope for
the Zero-Speed Case

Datasct Start | Number Valueof y* | d p Comment
value | of points
Original 7.10 567 20.5 13 0.0836
Alternative | 6.40 876 2475 17 | 0.0566 | Remove an outlier in the last bin
Alternative 2 6.44 931 24.6 14 | 0.0776

5.4.3. Extrapolation with the Distribution of the Peak-Based Envelope

As it was noted above, there is no exact theoretical solution to pcrform a correct
comparison with extrapolated estimate of peak-based envelope upcrossing of the zero
speed case. There is one approximate solution based on the regression formula for the
non-rare problem and two theoretical solutions known not to be completely applicable in
this case. These solutions are the theoretical rate of the both-sides crossing and
upcrossing ratc of the thcorctical envelope. The comparison may yield intercsting
information, however, strictly speaking, this comparison cannot be used to validate or
invalidate the method.

Figure 5.40 shows the breakpoints based on an approximate solution, the
theoretical rate of the both-sidcs crossings, and the rate of upcrossing of theoretical
envelope. Surprisingly, they are not much different, with the lowest point at about 13 m.
A similar picture can be seen in Figure 5.41 and Figure 5.42, except from 7.8-8.6 m in
Figure 5.42.

There is onc important detail of how the breaking point was calculated. The rate
of upcrossing of the theoretical envelope may be significantly different from an
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approximate solution as the latter is based on the regression formula for the upcrossing of
the peak-based envelope. As it was shown in Section 4, the rate of upcrossing for
theoretical and peak-based envelope is quite different for the zero-speed case. Therefore,
it may be expeeted that the rate of the theoretical envelope may be outside of the
confidenee interval of the extrapolated estimate, especially for the lower threshold. where
confidence interval is relatively narrow.

This is exactly what is observed in Figure 5.43. The alternative data set 2 clearly
illustrates this effeet. The inset of Figure 5.43 zooms in the initial range of curves.
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Figure 5.40 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on fitted distribution of maxima for zero-speed case.
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Figure 5.41 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on fitted distribution of maxima for zero-speed case. Alternative data set |
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Figure 5.42 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on fitted distribution of maxima for zero-speed case. Alternative data set 2
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Figure 5.43 Extrapolated estimate of upcrossing rate of the peak-based envelope with confidence
interval as a function crossing level. The threshold is 9 m, 227 peaks, alternative set 2
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As it ean be clearly seen from Figure 5.43, the curve of the rate of the upcrossing
of the theoretical envelope starts outside of the confidence interval of the extrapolated
estimate. Then, somewhere around 13 m, it enters the eonfidenee interval. Then, it leaves
the confidence interval just short of the level of 18 m.

Behavior of the theoretical rate of the both-sides crossing is somewhat similar. It
also may start outside of the eontidence interval. The reason is that sevcral both-sides
crossing events may be covered by one peak-based envelope upcrossing, say, for
example, if two neighboring positive peaks happen to be above the threshold (see Figure
5.44). That 1s why the theoretical rate of the both-sides crossing is larger than the
extrapolated estimate and the approximate solution for relatively lower levels. However,
once the level increases the situation, similar to the one shown in Figure 5.44, becomes
very rare. Only one peak at a time has a chance to be above the level. This makes the
both-sides crossing rates eonverge and cven eross the approximate solution in point A
trom Figure 5.43. As there is no reason why the theoretical rate of the both-sides crossing
should be lower than the uperossing rate of the peak-based envelope, turther behavior of
thc curve can be explained by an approximate naturc of the solution that used the
regression formula.

Behavior of theoretical rate of the both-sides crossing and rate of the theoretical
envelope was comparcd and discussed carlier, see Figure 5.15.
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Figure 5.44 On difference between envelope-base peak crossing and both side crossing

Concluding the discussion, both the theoretical rate of the both-sides crossing and
the upcrossing rate of the theoretical envelope may take values outside of the confidence
interval of the extrapolated estimate for lower thresholds. However, both curves may
enter the confidence interval for larger values of the threshold. Therefore, it makes sense
not to start the search for the breaking point from the very beginning. The level 13.25 m
was used as an initial for the Figure 5.40 through Figure 5.42.

The breaking point for the approximate solution, however, was searched for
starting from the very beginning. This made a difference only in Figure 5.42 in the range
of 7.8-8.6 m. If the breakpoint for the approximate solution is searched for starting at the
level 13.35 m, like for other solutions, the flat segment disappears, see Figure 5.45

Figurc 5.46 shows how the approximatc solution has left the confidence interval
around 9.5 m and has re-entered it around 11.5 m. Possibly, the reason of such behavior
is usage of the regression formula in the approximate solution that generally increases the
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level of uncertainty. Figure 5.46 shows the approximate solution that stays very close to
the upper boundary of the confidence interval. Also this problem does not exist for higher
thresholds. This needs to be taken in to account when choosing the range of averaging.
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Figure 5.45 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on fitted distribution of maxima for zero-speed case. Alternative data set 2
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5.4.4. Averaged Extrapolation Based on Weibull Fit of Maxima

The complete extrapolated solution plotted for different threshold levels (see
Figure 5.47) shows some spreading of the extrapolated estimate around the theoretical
solutions, therefore the averaging with formulae (3.46) and (3.47) can improve accuracy
of the estimate. Figure 5.48 shows the averaged estimates for the different levels of the
original dataset.
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Figure 5.47 Statistical extrapolation of the upcrossing rate of peak-based envelope - complete
solution for the level of 13 m based on distribution of peak-based envelope
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Values of breakpoints of averaged estimates for all datasets are shown in Table 16. The
averaging was done with the following rule: the highest threshold should have at least 30
points. The lowest threshold is half-way back from the highest thrcshold to the lcvel
where the Poisson flow is still applicable. This is an empirical rule based on the
observation that the higher thresholds tend to perform better for the extrapolation based
on the Weibull fit of maxima.

Table 16. Breakpoints for Averaged Estimates based on Weibull Fit of Maxima

Dataset Breaking point m

Approximate solution Theoretical rate of both- | Upcrossing  rate  of

sides crossing

theoretical envelope

Original 20.3 19.3 20.3
Alternative Se1 1 15.75 15.25 16.25
Aliernative Se1 2 19.3 18.8 19.8

5.4.5. Extrapolation Based on Extreme Value

The procedure applicd for extrapolation bascd on the cxtreme value distnibution
for the zero-speed casc 1s exactly the same as it was for the following wave case. Figure
5.49 illustrates that while collecting data, only one point in Window 1 was collccted as
the maximum value, despite that there was one more peak exceeding the sample
threshold of 9 m; there 1s only one point in Window 2 that 1s above the threshold.
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Figure 5.49 Collecting data for extreme value distribution, threshold 9 m, zero speed case

Since there 1s no exact theoretical solution the results may be compared with the
same three solutions used for the extrapolation based on the Wcibull fit of the maxima.
Besides the approximate solution based on regression formula for thc non-rarc problem,
these solutions include the theoretical rate of the both-sides crossing and upcrossing ratc
of theoretical envelopc.

As 1t can be seen from thc discussion in the previous subsection, the difference
between these solutions 1s not that large, especially in comparison with the width of the
confidence interval for thc extrapolated estimate. Some difference was found for
rclatively low values of the threshold where two theoretical solutions could go outside of
the confidence interval and this has to be accounted for while calculating the values of
breakpoints.

The breakpoint values of the extrapolation based on the extreme value distribution
are shown in Figure 5.50 through Figure 5.52 for all three data sets.
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Figure 5.50 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on extreme value distribution for zero-speed case. Original data set
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Figure 5.51 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on extreme value distribution for zero-speed case. Alternative data set 1
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Figure 5.52 Breakpoint level (the level below which the extrapolation is still good) vs. threshold for
the extrapolation based on extreme value distribution for zero-speed case. Alternative data set 2
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Behavior of all three solutions in terms of the breakpoints are pretty similar and
do not require any additional comments with the exception of Figure 5.52 where results
for Alternative data set 2 are shown. All of the curves have a flat segment in the range of
thresholds 7.5-8.2 m. This is an area where relatively poor performance was observed.
The approximate solution left the confidence interval around the 11 m level and the two
other solutions never entered the confidence interval at all. The rest of the thrcshold
valucs have shown normal performance.

The averaging procedure was applied for all of the thresholds while the number of
data points was above 30. The result for the original data set is shown in Figure 5.53. As
one can see from this figure, all three solutions stay within the confidence interval until
the level of 19.5 m was reached. The inset in Figure 5.53 shows the comparison between
theoretical solutions and both extrapolated estimates for the Icvel of 13 m.

The results on the breakpoints of the averaged extrapolated estimates based on the
extreme value distribution are shown in Table 17.
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Figure 5.53 Averaged estimate of rate of upcrossing of the peak-based envelope extrapolated using
extreme value distribution. Insert shows the level of 13 m
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Table t7. Break

oints for Averaged Estimates based on Extreme Value Distribution

Dataset Breaking point m |
Approximate solution Theoretical ratc of both- | Upcrossing  rate  of
sides crossing theoretical envelope |
Original 20.3 19.3 20.3 |
Allernative Set | 13.75 1525 14.5 _
Alternative Set 2 19.25 18.75 19.75

The lowest breakpoint in Table 17 is 13.75 m. It corresponds to the mean time to
cvent of 11.89 days. So in order to gct a statistically credible estimatc, say, 10 cvents are
needcd. These 10 events may require almost 120 days worth of data. At the same time
the method allowed us to get the estimate with only about 4 days of data (100 hours). So
120 days, or 2880 hours, was reduced to 100 hours by the use of the method. That said.
the efficiency of the mcthod in the worst case resulted in a data reduction factor ot 28.
Avcraging the breakpoint between all three cases brings it to 17.77 m and the data
reduction factor up to 71,260. Thesc data, howcvcr has to be considcred preliminary. as
more performance checks are expected.

5.5. Summary

The principal objcctive of this work is to find a practical solution for the
probability of a partial stability failure during a given ime. The goal of this section is to
find out how to use the Peak-Over-the-Threshold (POT) method for partial stability in the
form of a large roll event.

The large roll event 1s equally dangerous on either sidc of a ship. Thercfore it
should be described as a random event of “both-sidcs crossing™, a combining an
upcrossing of a lcvel on the positive side or downcrossing of a level on the negative side.
If the boundary 1s the same for both sides and the process has symmetric distribution, the
rate of the both-sides crossing is equal to twicc of the rate of the upcrossing. The Poisson
flow assumption is only applicable for a relatively high level of both-sides crossings, as
upcrossing and downcrossing cvents occurring during one period are not independent.

An upcrossing of the envelope of the process is a random event, theoretically
equivalent to the both-sides crossing. Poisson flow is applicable to the envelope
upcrossing. Also, the envelope upcrossing is equivalent to a random event that an
absolute value of a peak has exceeded that level. Since the peaks of the envelope are
used. the new version of the method is call “Envelope Peaks-Over-the-Threshold”
(EPOT).

The problem of the upcrossing of the peak-based envelope is that it does not have
a closed-form solution for a generic spectrum even for a normal process. Nevertheless
such a solution 1s needed to compare results of sample calculations. If a spectrum is
narrow, then the peak-based envelope is a close approximation for the theoretcal
envelope. As a result, the formula for the upcrossing of the theoretical envelope of a
normal proccss can be uscd. Therefore, only the examplc with a narrow-band spectrum
can bc used to complete the theoretical checking of the EPOT method.
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To check the method using the example of a generic spectrum, an approximate
solution is needed. Following the principle of separation, such a solution can be presented
in the form of non-rare and rare sub-problems. The non-rare sub-problem is just an
upcrossing of the peak-based envelope. It can be approximated by fitting a regression
formula to the statistics of upcrossings. The solution of rare sub-problems is the
probability that a process will exceed a given level if it has crossed a threshold below that
level. This solution can be developed using the fact that absolute values of peaks of a
normal process follow truncated Rayleigh distributions starting at a certain value. This
value depends on a bandwith of the spectrum.

Finally, the EPOT method was checked against both examples and shows quite
satisfactory performance with average data reduction factors of 290,500 and 71,260
respectively.
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6. Algorithm Implementation

This section describes the reference implementation of the EPOT algorithm. The
reference implementation is coded in Matlab (requires Matlab R2008a or later).

6.1.Envelope Construction
6.1.1. Peak Definition for the Process

Two definitions of a peak are implemented and may be used to define the
envelope, then to dcfine the peaks of the envelope. The first definition, referred to as a
“zero-erossing peak™ (ZC), defines a peak as the maximum value between a zcro up
crossing and a zero down crossing. Negative peaks (troughs) arc computed as the
minimum value between a zero down erossing and a zero upcrossing and then reflccted
about zero.

Alternatively, peaks may be defined as local maxima. In this formulation, a particular
point is eonsidered to be a peak if it is greater than the threc pcvious and three following
points.

The zero-crossing peak method is used for two reasons. First, the zero-crossing
method is much more reliable on signals that have noise. Several assumptions (related to
noise frequeney, the motion frequeney, sampling rate, etc.) need to be made (or filtering
employed) to find thc peaks on a noisy signal. Second, the zero-crossing method
removes secondary peaks, which are not of interest to us.

6.1.2. Envelope Definition

To construct the composite peak-based envelope, the negative peaks are reflected
about the reference level. For a proeess sueh as the rolling of a ship, this reference level is
zero, since deviations from upright are what are important, not deviations from the mean
value. For cases where deviations from the mean value are important, the signal should
bc de-meaned (and the levels of interest should be given relative to the mean of the
process). The time history of the envclope is constructed through linear interpolation
between the peaks at the sampling frequency of the input signal.
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Figure 6.1. Sample Envelope With Linear Interpolation
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6.1.3. Peak Definition for the Envelope

The peaks of the envelope are defined in a similar manner to the peaks of the signal.
Instead of utihzing zero crossings, mean crossings of the envelope are used. The mean of
the envelope is computed using the interpolated time history and the envelope peaks are
thc maxima and minima between mean crossings. Only the peaks above the envelope
mean are used further in the algorithm.

6.2.Candidate Threshold Selection

Imtially sixteen thresholds are defined. These thresholds are linearly spaced between
the mean value of the envelope time history and an upper threshold. The upper threshold
1s defined by the requirement that we have at least 30 points to fit a distribution. The
peaks of the envelope are sorted in descending order and the 31* entry in the sorted list is
the upper threshold.

The candidate thresholds are analyzed for the applicability of Poisson Flow to
exceedanees of the thresholds (using the envelope peak data). The tests for Poisson Flow
applicability are discussed in Section 6.3. The lowest threshold that passes both tests for
Poisson Flow applicability i1s taken as the lowest threshold for use in the statistical
extrapolation. A new set of eight thresholds is hnearly distributed between this lower
threshold and the upper threshold deseribed in the above paragraph.

6.3.Analysis of Poisson Flow Applicability

Sections 1.3.5 and 5.1.3 describes two methods for assessing the applicability of
Poisson Flow for a given threshold, chi-squared Pearson Test and a Kolmogorov-
Smirmov Test (KS Test).

6.3.1. Pearson ,1} Test

In a Pearson chi-squared test, the hypothesis is posited that the number of events
in a certain time span 1s distributed via a Poisson distribution. To carry out this test, the
envelopes derived from the time histories are first concatenated together. The peaks of
the envelopes have already been found, so there are no peaks at the concatenation point.
A window size (time span) 1s then defined to count events (peaks over the threshold).
This time span 1s computed as:

Bk
WindowSize= =22 (6.1)

POT

Where Tsampie 1s the total duration of the coneatenated envelopes and Npor is the
total number of peaks above the threshold in question. Defining the window size in this
way generally limits the maximum number of events in a given window to about 4. This
essentially sets the intensity (the single parameter) of the Poisson distribution to 1.0. The
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concatenated envelope is then divided into sections each with a length of the window
size. The number of POT in each window 1s eounted. A Poisson distribution is fit to this
data set using the maximum likelthood method. A good starting point for the intensity of
the distribution in the fitting process is the mean number of events per window. This
process 1s repeated for window lengths of 0.8 and 1.2 times the original length. The
goodness of fit metric is then averaged between the three window spans. This is done
sinee there 1s some variability of the results with window size due to the random process
and the finite record length.

See Figure 6.2 for a sample PDF used for the chi-squared test. If the averaged
goodness of fit metric is above the aecepted significance level (0.05), then the
distribution fit is accepted and one of the two eriteria for Poisson Flow at this threshold is
satisfied.

PDF

E ‘ Histogram
~==Fitted PDF

Distribution = Poisson
Params = [1]

] Method = mle

PDF
L
’
4

S 1’ GoF =0.27107

e
-~
-~
* o
Ha ™
154 =

llv‘lllllllllllt‘llllllllllllllllllllv‘r‘l

0 1 2 3
X

Figure 6.2. Sample Distribution Fit to Number of Events in Time Window

6.3.2. Kolmogorov Smirnov (K-S) Test

For the K-S Test, the empirical cumulative density function (CDF) of time with
no event derived from the time history, is compared to the CDF that is computed using
the exponential distribution and a statistically calculated mean crossing rate (sce Section
6.4). The empirical CDF is derived from the time history as deseribed in Section 1.3.4.

The smallest time window analyzed is based on the decay of the autocorrelation
function of the process. The peaks of the autocorrelation function are found (using the
zero crossing method) and the first peak with a value below 0.05 is found. The smallest
time window is set to the time of this peak. If multiple records are available for a given
condition, then the autocorrelation functions of the records are averaged before the peak
search is performed. For short duration records, the computed autocorrelation funetions
can behave poorly (even after averaging); they do not decay as expected. The lack of
decay is duc almost entirely to a deficieney in the amount of data. If no peaks of the
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averaged autocorrelation funetion are found to be below 0.05, then an alternative
approach 1s taken. In this case, the peak based envelope of the autocorrelation funetion is
computed and the time of first loecal minimum of the envelope is taken as the decay time.

Each window is examined to sec if there is at least one event in it. An auxiliary
variable p; is construeted that is equal to 1 if there is at least one event in the window and
zero if there is no event in the window. The mean of p; is computed for each record. This
value is the probability that at least one event will oceur within the window. The
windows are then grouped in sets of two and the proeess is reapeated for a window size
twiece as big. The original windows are then grouped in sets of three, ete. This combining
of windows happens until one window is produced. For the case of multiple records, the
probabilities are averaged across the records. This process creates the empirical
cumulative density funetion (EDF) for the probability of at lecast one event oceurring.

The theoretical CDF is then computed using the exponential distribution, as in
equation (1.38). The K-S Test is carried out between these two density funections using
equations (1.126), (1.127), and (1.129). Because of the limited data set, the EDF ecan
become unrealiable for high values of probability. For this reason an upper limit is set,
above which the comparison, using equation(1.126), neglects the data. The upper limit
on the EDF is typically set at 0.65 (in terms of probability). The goodness of fit is only
checked for values below this.

6.4.Calculation of Threshold Exceedance Rates
6.4.1. Esimate of Threshold Exceedance (Upcorssing) Rate

The threshold exceedanee (uperossing) rates are computed statistically. For the
EPOT method the threshold erossing rate is given by:
N
A =—Lor 6.2
= (6.2)
Where Npor is the number of peaks above the threshold and 7 is the total duration of the
sample. Equation (6.2) is derived from equation (3.19).

The threshold crossing rate is not strictly needed when the extreme value
distribution is used for the rare problem (EVPOT mecthod). It may, however, be
computed as follows:

i N
IS A 6.

¥ Mavima

Where Nyor is the number of maxima over the threshold, Niyuime 1S the total number of
maxima, and 7 is again the total sample time. Equation (6.3) is equivalent to equation
(2.60). Here, the quantity (Nyor/ Naaxima) 15 the probability that a given maximum value
will be above the threshold and the quantity (/- Nyor/ Nuaxima ) 18 the empirieal CDF for
the sample maxima.
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6.4.2. Esimate of Confidence Interval for Threshold Exceedance Rate

The confidence interval on A is computcd by first computing the confidence
interval for Nporor Nyor. Since each of these quantities may be considercd the result of
a sct of Bernoulli trials, we may use the binomial distribution to compute the confidence
intcrval.

The binomial distribution has two parametcrs, commonly taken as 7 and p. 1 1s
the number of tnals (in our case the number of timc steps) and p is the probability that
any particular time step is a peak (or extremum) over the threshold. p is given simply by:

N
D= S, F (6.4)
n

The upper and lower bound of the confidence interval of the estimate of A are

then given by:

X !
B QBmummI (I - 92 | n, p) ) QB"”"'”"] ( B 2 17 l)) ((15 )
— ) )\'IB =

Ao = =

Where B is the complimentary to confidenceprobability, Q is a function mvere to CDF.

If n i1s sufficiently large (above 200), then a normal distribution may be
substituted for the binomial distribution, since the factonals for the binomial distribution
can be difficult to compute for large n. In this casc one would use thc mcan and variance
of the binomial distnibution (n-p and np-(Il-p), respectivcly) as thc parametcrs of the
normal distribution. Details of thcoretical background is given in Section 1.2.

6.5.Distribution Fits to Peaks/Maxima Over the Threshold

A two-paramcter Weibull distribution is fit to the pcaks and maxima over the
threshold.  Application of the method of maximum likelihood estimation (MLE) was
discussed in Section 2.1.4. However, independent review of this work suggested that,
when fitting a Wcibull distribution with a shape parameter close to 1.0, the MLE method
is known to have convergance issues. In gencral, the pcak and maxima data being fit
have this character. [t was suggested that a least squares titting approach may be more
appropriate. For this reason the distribution is fit using a least squares fit to the
cmpirically derived cumulative distribution function (EDF). The EDF is derived by
ordering the data from smallest to largest. The EDF of a given value located at position i
in the ordcred set 1s computed as:

i
EDF, =—'— (6.6)
n +1

samples

Where 7 1s the index (starting at 1) of the valuc in the ordered set and » is the number of
peaks or maxima over the threshold in the data set. A minimization of the squared error
between the EDF and computed CDF is then performcd by adjusting the Weibull
distribution parameters.
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6.6.Calculation of Exceedance Rates for Levels of Interest

6.6.1. Esimate of Level Exceedance Rates

Finally, the exeeedance rates for the levels of interest are computed. The ealeulation
is comprised of the threshold erossing rate and the distribution fit to the peaks/maxima
over the threshold. For the rare problem usng distribution fit (details are given in 3.3.1),
A2, for an arbitrary level, a;, is given by:

A, =4, '(I_FI’()T(X<aZ)) (6.7)

Where A, is the threshold erossing rate and Fpor is the CDF for the distribution of
envelope peaks over the threshold.

When the extreme value distnibution is used for the rare problem (see subsection
3.3.3), we first compute the probability that a given maximum value is over the threshold:

N\I()T -
Puyor = N (6.8)
Mavima
Where Naavima 18 the total number of maxima and N7 1s the number of maxima over the
threshold. Defining paor allows easier definition of the eonfidenee interval on A, in the
subsequent section. The exceedanee rate, Az, 1s then given by:

1
A, = —Fln(l — P —For B2 8 ) (6.9)

Where Fuor 1s the CDF of the distribution of maxima and 7 1s the total duration of all
sample data.

6.6.2. Esimate of Confidence Interval for Level Exceedance Rates

For the rare problem using the simple distribution fit for peaks, the eonfidence
interval on the level exceedanee rates is a eomposite value of the confidence intervals for

the threshold erossing rate and the distribution fit.
7»(38 = k(l‘li ,(] - F,l,(fr(x < (l,))
LB LB ~ LB ) (6 l O)
Ay =4 '(1 —Fpor(x < (’z))

For the rare problem using extreme value distribution, we first define the
confidenee interval on payor. This 1s done using equation (6.5), where n is the total
number of maxima and p 1s pyor. The confidenee interval on the exeeedanee rate is then
given by:

, 1 :

A - —Fln(l P =P (e Y))
6.11)

1

A = _Fln(l = P O~FlpFwa )))
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6.6.3. Averaging of Results for All Thresholds

As discussed in section 6.2, the lcvel exceedance rates are computed using eight
different thresholds. After computing the level execedanee rates using each threshold,
the results for all thresholds are averaged together. This is actually done by averaging the
logarithm of the erossing rate estimates as follows:

1 MThreyholds 3
D log(n,)
— ]O M Thresholds i=1
avg

(6.12)

Where n7hreshoias 18 the number of thresholds and 4, is the estimate of the level crossing
rate for threshold i.

This log averaging method is used beeause we are generally interested in the order of
magnitude of the level exeedanee rate estimates. It is possible that one of the estimates is
several orders of magnitudes larger than the others. In this case the order of magnitude of
the result of straight averaging is the order of magnitude of the outlier divided by the
number of estimates (eight in our case). That is, the presence of the outlier ean greatly
skew the order of magnitude of the result if straight averaging is used.

6.7. Summary
The algorithm of EPOT (as implcmented) eonsists of the following steps:
1. Search for zero-erossing peaks.

2. Evaluate pcak-based envelope by reflecting negative peaks and using linear
interpolation.

3. Caleulation of the mean level of thc envelope and searching for the mean-
crossing peaks of the envelope.

4. Define 16 thresholds; the upper threshold must have at lcast 30 pcaks of the
cnvelope above it; the rest of the thresholds arc linearly spaced between the
upper threshold and the mean of the envelope.

5. Check Poisson flow applicability for cach threshold with both Pearson chi-
squared test and Kholmogorov-Smirmov test. The thresholds where both tests
that passed are retained.

6. Estimate the threshold exceedance (upcrossing) rate and its confidence
interval for eaeh threshold.

7. Evaluate empirical cumulative distribution funetion for peaks of the envelope.
exceeding ecach threshold; fit two-parameter Wcibull distribution with the
least squares method. Calculate boundaries of eonfidenee interval for the fit.

8. Fit the two-parameter Weilbull distribution as an extreme value distribution
using speeified time-window for peaks of the envelopc exceeding cach
threshold. Calculate boundaries of confidence interval for the fit.

9. Calculate exceedanee (upcrossing) rate for the level of interest using results
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for each threshold; calculate boundaries of confidence interval for each value
of the exceedance rate.

10. Find the average exceedance rate over all the threshold and boundaries of its
confidence interval. This is the final result.



7. Concluding Comments
7.1.The Problem

Given a time history of the response of a nonlinear dynamieal system; the probability
of exeeeding a given level during a given time is to be found. It is understood that there
are no (or statistieally insignifieant number) of observations that exceed this level.
Therefore the formulated problem implies statistieal extrapolation.

7.2.The Approach

By the very essenee of any extrapolation method, it is a judgment on data outside of
observed range, but based on the data within the observed range. Ship motions data are
statistieally dominated by relatively small values laying in the linear range; therefore, an
attempt to use all the data for statistieal extrapolation, in faet, leads to predietion based on
a linear assumption. To avoid “unintentional lineanerization™ of the problem, only large-
value data that eontain information of nonlinearity of the dynamical system should be
used for extrapolation. The methods that use only the data above a eertain threshold are
known as “‘Peak-over-Threshold” (POT) methods.

The POT method ean be eonsidered as an implementaion of the principle of
separation, when the problem of the estimate of a probability of rare event is divided n
two: non-rare and rare. The non-rare problem is meant to be solvable with conventional
statistical method. In the ease of the problem being considered, the non-rare is an
estimate of exceedanee (uperossing) for a threshold that separates small-valued data in
the linear range from the data where influenee of nonlinearity may be considered as
“significant”. The rare problem is actual statistical extrapolation using only the data
above the threshold.

7.3.The Study

As the probability of exeeedanee is dependent on time of exposure, the relation
between the probabity and the time was the first subject of this study. It was concluded
that Poisson flow should be used to relate probability and the time of exposure.
Applieation of the Poisson flow allows use of the exponential distribution for time
before/between the events of exeeedanee/upcrossing and requires that events must be
independent. Pearson-ehi-square and Kholmogorov-Smimov goodness-of-fit test ean be
used to eheek applicability of Poisson flow.

The extreme value theory was and is eonsidered as the main tool to address the
problem of evaluation of the probability of exeeedanee with statistieal extrapolation. In
order to relate this study with other work in the field, the relation between extreme value
distribution and time was examined. It was found that the eorrect interpretation of
extreme value distribution is inherenrly related with a eertain time duration. Extreme
value distribution deseribes the behavior of the largest value observed during a given
time.
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Further consideration was focused on the properties of peaks. Obviously, 1f peak of
the process exceeds the level, the process had excecded the level. At the same time, the
peak data are easier to work with as they do not depend on sampling ratc; although
consecutive peaks are not independent, the correlation between them i1s less in
comparison with two consecutive values of thc time history.

The rare problcm can bc formulated in two ways, that involve fitting the two-
paramcter Weibull distribution. However, it the Weibull distribution is fit to all thc peaks
abovc the threshold, it is uscd to smooth the histogram. The second way is based on the
properties of the Weibull formula as one of thrce cxtreme value distributions when only
the largest peak observed during a time window 1s used for the fit.

Assumption of independence of consecutive cxceedanccs (upcrossings) may turn out
to be over-restrictive for ccrtain types of practical applications. One of them is analysis of
motions in stern quartering seas while the ship has significant forward speed. The
encounter spcctrum becomes quite narrow due to Doppler effect. As a result, motion
response becomes highly clustered; satisfying the independence clause may become non-
trivial. Another important practical consideration is when exccedance of the level on
both sides 1s an objectivc. In the latter casc thc assumption of independence generally is
not applicablc, with the exception of a few very specific cases. If a ship had a large roll
angle on onc sidc, then 1t is very likely to havc a largc excursion on the other side as the
autocorrelation function stays fairly substantial after just half a period of the motions.
For such applications, it makes sense to work with the envelope of the process rather than
with the time history of the process itself.

It i1s very efficient to use an envelope with a narrow band process as the envelope
changes significantly slower than the process itself. For a more general case, piecewise
linear or pcak-bascd cnvelope (lincar interpolation betwcen the absolute valucs of local or
zcro-crossing peaks) 1s found to be more robust. It was shown that statsistical
extrapolation is based on the envelope peak over the threshold. Also, it was shown that
the procedure for the ecnvclope peaks docs not differ much from the procedure with the
peaks of the time history of the process.

A numerical example was used throughout thc study. The data set for thc numerical
cxample consisted from 200 timc histories of wave elevations. Each time history was 30
minutes long and was reconstructed from Bretschneider spectra with a Fourier scries.
Distribution of these wave elcvations is normal, so the probability of excecdance during a
given time is known from upcrossing theory in closcd form. Application of the EPOT
method to this data set shows quite satisfactory performance with average data reduction
factors from 71,260 to 290,500 (the factor of how much morc data would be needed to
get the same result directly from statistics).

7.4. The Outcome

As a result of the work described in this report, the EPOT procedure was developed ,
justified and implemented. The procedure requires input of time histories that can be
both numerical or experimcmnatal origin. The output is an estimate of exceedance
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(uperossing) rate that allows calculation of probability of exceedanee during a given time.
As the EPOT procedure is related with statistical estimates, confidenee intervals are
evaluated and carried out through the entire proeedure until the final result. The
procedure was partially validated using wave elevation data.

7.5.Future Work

The present report describes statistical aspects of the method. However, both the
threshold and the level of interest may be subject to additional limitation coming from the
dynamical aspect of the problem.

The core approach assumes that there is available data that carries information on
thcnonlinear properties ot dynamical system, and this data is located above a certain
threshold. Setting minimum levels for the threshold cannot be performed based solely on
statistical data as it requires knowledge of when the system becomes nonlinear. As the
first expansion, for roll motion of conventional ship, this minimum threshold can be
taken from the ealm water GZ curve that is the stiffness of dynamieal system in roll. For
the most conventional ships, the boundary between linear and nonlincar 1s around 10-12
degrees.

Another limitation is related to the maximum level of interest for which the EPOT
results ean still be considered legitimate. While there are no statistical limitations on the
level of interest, physical charactcristics of thc dynamical system do change with the
level. The instantaneous GZ curve that plays a role of stiffness for roll motions must have
a maximum. For most ships, therc are three equilibria for roll: upright position, angle of
vanishing stability and capsized position. Maximum of the GZ curve can be considered a
boundary between the attractor at the upright position and repeller at the angle of
vanishing stability. Therefore, the charaeter of nonlinearity is quite ditferent beftore and
after the maximum angle of the GZ curve. As the roll angles exeeeding the maximum of
the GZ curve are quite rare, the chances are that the rare problem will not have enough
information on the behavior of the system beyond the angle of the maximum. Therefore
the upper limitation of EPOT may be cxpeeted somewhere around the maximum angle of
the GZ curve.

Sctting up limits for the lowest threshold and the highcst level of interest requires a
formal procedure that still needs to be developed. This procedure is likely to be based on
dynamical characteristic of the ship rather than statistical data.

Thus far, thc only validation which has been performed was done on a wave elevation
dataset. This dataset essentially represents the simplest linear system. Therefore the next
step in validation of the procedure would be a validation of a response of a nonlinear
dynamieal system. This system should be simple enough, so direct Monte-Carlo
simulation should be available to gencrate enough data for “brute-force™ statistical
processing that will provide the “correet answer”, The subset of the gencrated data should
be used with EPOT to provided an extrapolated result, which is expected to match the
“eorrect answer’.
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